Methane production from antibiotic bearing swine wastewater using carbon-based materials as electrons' conduits during anaerobic digestion
Corresponding Author
Vianey A. Burboa-Charis
Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), Cuidad Obregón, Mexico
Correspondence
Luis H. Alvarez, Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
Email: [email protected]
Vianey A. Burboa-Charis, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Luis H. Alvarez
Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora (ITSON), Cuidad Obregón, Mexico
Correspondence
Luis H. Alvarez, Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
Email: [email protected]
Vianey A. Burboa-Charis, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Vianey A. Burboa-Charis
Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), Cuidad Obregón, Mexico
Correspondence
Luis H. Alvarez, Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
Email: [email protected]
Vianey A. Burboa-Charis, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Luis H. Alvarez
Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora (ITSON), Cuidad Obregón, Mexico
Correspondence
Luis H. Alvarez, Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
Email: [email protected]
Vianey A. Burboa-Charis, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
Email: [email protected]
Search for more papers by this authorSummary
The impact of granular-activated carbon (GAC), graphite felt (GF), and activated carbon cloth (ACC), and two veterinary antibiotics, oxytetracycline (OTC) and enrofloxacin (ERX), was evaluated during the production of methane from the anaerobic digestion of swine effluent. The results showed that GAC (10 g/L) increased 3.0-fold the methane production and 1.4-fold the organic matter removal efficiency, with respect to the control in the presence of OTC (10 mg/L). With ERX, GAC also increases the production of methane with respect to ACC and GF. Adsorption experiments reveal the affinity of antibiotics to carbon materials; nonetheless, even though GAC adsorbed lesser antibiotics, which would mean that antibiotic toxicity remained, the production of methane with GAC was higher. The microbial electron-accepting capacity of GAC (0.57 mmol/g) indicates that electrons from organic matter's oxidation are driven to the material and, subsequently, may act as an electron donor for methanogens to promote methane production. Finally, ERX showed the capacity to act as a redox mediator to reduce Fe(III) up to 1.6-fold higher than the control; nonetheless, it was not reflected in improving the production of methane.
REFERENCES
- 1Meng J, Li J, Li J, et al. Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor. Bioresour Technol. 2015; 198: 884-890. https://doi.org/10.1016/j.biortech.2015.09.023.
- 2Tong L, Li P, Wang Y, Zhu K. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere. 2009; 74(8): 1090-1097. https://doi.org/10.1016/j.chemosphere.2008.10.051.
- 3Benotti MJ, Trenholm R, Vanderford BJ, Holady JC, Standford B, Shane AS. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol. 2008; 43(3): 597-603. https://doi.org/10.1021/es801845a.
- 4Richardson BJ, Lei AP, Giesy JP, Lam PKS. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res. 2008; 42: 395-403. https://doi.org/10.1016/j.watres.2007.07.031.
- 5Alvarino T, Suarez S, Lema J, Omil F. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. Sci Total Environ. 2018; 615: 297-306. https://doi.org/10.1016/j.scitotenv.2017.09.278.
- 6Patiño Y, Díaz E, Ordóñez S. Microcontaminantes Emergentes en Aguas: Tipos Y Sistemas De Tratamiento water micropollutants: classification and treatment technologies. Av en Ciencias e Ing. 2014; 5(2): 1-20.
- 7Kleerebezem R, Joosse B, Rozendal R, Van Loosdrecht MCM. Anaerobic digestion without biogas? Rev Environ Sci Biotechnol. 2015; 14(4): 787-801. https://doi.org/10.1007/s11157-015-9374-6.
- 8Adekunle KF, Okolie JA. A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol. 2015; 06(03): 205-212. https://doi.org/10.4236/abb.2015.63020.
- 9Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008; 99(10): 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057.
- 10Sanz JL, Rodríguez N, Amils R. The action of antibiotics on the anaerobic digestion process. Appl Microbiol Biotechnol. 1996; 46(5–6): 587-592. https://doi.org/10.1007/s002530050865.
- 11Li Y, Chen Y, Wu J. Enhancement of methane production in anaerobic digestion process: a review. Appl Energy. 2019; 240: 120-137. https://doi.org/10.1016/J.APENERGY.2019.01.243.
- 12Lovley DR. Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol. 2017; 71(1): 643-664. https://doi.org/10.1146/annurev-micro-030117-020420.
- 13Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol. 2012; 14(7): 1646-1654. https://doi.org/10.1111/j.1462-2920.2011.02611.x.
- 14Baek G, Kim J, Cho K, Bae H, Lee C. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation. Appl Microbiol Biotechnol. 2015; 99(23): 10355-10366. https://doi.org/10.1007/s00253-015-6900-y.
- 15Dang Y, Holmes DE, Zhao Z, et al. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour Technol. 2016; 220: 516-522. https://doi.org/10.1016/J.BIORTECH.2016.08.114.
- 16Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. 2011. doi:https://doi.org/10.1111/j.1462-2920.2011.02611.x
- 17Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Promoting direct interspecies electron transfer with activated carbon. Energ Environ Sci. 2012; 5(10): 8982. https://doi.org/10.1039/c2ee22459c.
- 18Yang Y, Zhang Y, Li Z, Zhao Z, Quan X, Zhao Z. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. J Clean Prod. 2017; 149: 1101-1108. https://doi.org/10.1016/J.JCLEPRO.2017.02.156.
- 19Luo J, Yang J, He H, et al. A new electrochemically active bacterium phylogenetically related to Tolumonas osonensis and power performance in MFCs. Bioresour Technol. 2013; 139: 141-148. https://doi.org/10.1016/j.biortech.2013.04.031.
- 20Zhang S, Chang J, Liu W, et al. A novel bioaugmentation strategy to accelerate methanogenesis via adding Geobacter sulfurreducens PCA in anaerobic digestion system. Sci Total Environ. 2018; 642: 322-326. https://doi.org/10.1016/j.scitotenv.2018.06.043.
- 21Zhao Z, Zhang Y, Li Y, Dang Y, Zhu T, Quan X. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem Eng J. 2017; 313: 10-18. https://doi.org/10.1016/j.cej.2016.11.149.
- 22Yan W, Lu D, Liu J, Zhou Y. The interactive effects of ammonia and carbon nanotube on anaerobic digestion. Chem Eng J. 2019; 372: 332-340. https://doi.org/10.1016/j.cej.2019.04.163.
- 23Alvarez LH, Arvizu IC, García-Reyes RB, Martinez CM, Olivo-Alanis D, Del Angel YA. Quinone-functionalized activated carbon improves the reduction of Congo red coupled to the removal of p-cresol in a UASB reactor. J Hazard Mater. 2017; 338: 233-240. https://doi.org/10.1016/j.jhazmat.2017.05.032.
- 24Castañon D, Alvarez LH, Peña K, García-Reyes RB, Martinez CM, Pat-Espadas A. Azo dye biotransformation mediated by AQS immobilized on activated carbon cloth in the presence of microbial inhibitors. Environ Pollut. 2019; 252: 1163-1169. https://doi.org/10.1016/j.envpol.2019.06.050.
- 25Martinez CM, Alvarez LH. Application of redox mediators in bioelectrochemical systems. Biotechnol Adv. 2018; 36(5): 1412-1423. https://doi.org/10.1016/J.BIOTECHADV.2018.05.005.
- 26Alvarez LH, Perez-Cruz MA, Rangel-Mendez JR, Cervantes FJ. Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process. J Hazard Mater. 2010; 184(1–3): 268-272. https://doi.org/10.1016/j.jhazmat.2010.08.032.
- 27Goertzen SL, Thériault KD, Oickle AM, Tarasuk AC, Andreas HA. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon. 2010; 48(4): 1252-1261. https://doi.org/10.1016/j.carbon.2009.11.050.
- 28Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature. 1996; 382(6590): 445-448.
- 29Lin CY, Lay CH. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy. 2004; 29(3): 275-281. https://doi.org/10.1016/j.ijhydene.2003.07.002.
- 30Saquing JM, Yu YH, Chiu PC. Wood-derived black carbon (biochar) as a microbial electron donor and acceptor. Environ Sci Technol Lett. 2016; 3(2): 62-66. https://doi.org/10.1021/acs.estlett.5b00354.
- 31Klüpfel L, Keiluweit M, Kleber M, Sander M. Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol. 2014; 48(10): 5601-5611. https://doi.org/10.1021/es500906d.
- 32Chen S, Rotaru AE, Liu F, et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour Technol. 2014; 173: 82-86. https://doi.org/10.1016/j.biortech.2014.09.009.
- 33Chico J, Van Holthoon F, Zuidema T. Ion suppression study for Tetracyclines in feed. Chromatogr Res Int. 2012; 2012: 1-9. https://doi.org/10.1155/2012/135854.
10.1155/2012/135854 Google Scholar
- 34Teixidó M, Medeiros J, Beltrán JL, Prat M-D, Granados M. Sorption of Enrofloxacin and ciprofloxacin in agricultural soils: effect of organic matter. Adsorpt Sci Technol. 2014; 32(2–3): 153-163. https://doi.org/10.1260/0263-6174.32.2-3.153.
- 35Zhu D, Pignatello JJ. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol. 2005; 39(7): 2033-2041.
- 36Park J-H, Kang H-J, Park K-H, Park H-D. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications. Bioresour Technol. 2018; 254: 300-311. https://doi.org/10.1016/J.BIORTECH.2018.01.095.
- 37Martins G, Salvador AF, Pereira L, Alves MM. Methane production and conductive materials: a critical review. Environ Sci Technol. 2018; 52(18): 10241-10253. https://doi.org/10.1021/acs.est.8b01913.
- 38Wu Y, Wang S, Liang D, Li N. Conductive materials in anaerobic digestion: from mechanism to application. Bioresour Technol. 2019; 122403. https://doi.org/10.1016/j.biortech.2019.122403.
- 39Fujinawa K, Nagoya M, Kouzuma A, Watanabe K. Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells. Appl Microbiol Biotechnol. 2019; 103(15): 6385-6392. https://doi.org/10.1007/s00253-019-09946-1.
- 40Bueno-López JI, Rangel-Mendez JR, Alatriste-Mondragón F, Pérez-Rodríguez F, Hernández-Montoya V, Cervantes FJ. Graphene oxide triggers mass transfer limitations on the methanogenic activity of an anaerobic consortium with a particulate substrate. Chemosphere. 2018; 211: 709-716. https://doi.org/10.1016/j.chemosphere.2018.08.001.
- 41Zhang J, Wang Z, Wang Y, et al. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure. Bioresour Technol. 2017; 245: 850-859. https://doi.org/10.1016/J.BIORTECH.2017.08.217.
- 42Cioabla AE, Ionel I, Dumitrel GA, Popescu F. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol Biofuels. 2012; 5: 39. https://doi.org/10.1186/1754-6834-5-39.
- 43van der Zee FP, Cervantes FJ. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv. 2009; 27(3): 256-277. https://doi.org/10.1016/j.biotechadv.2009.01.004.
- 44Hernandez ME, Kappler A, Newman DK. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol. 2004; 70(2): 921-928. https://doi.org/10.1128/AEM.70.2.921-928.2004.
- 45Price-Whelan A, Dietrich LEP, Newman DK. Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol. 2006; 2(2): 71-78. https://doi.org/10.1038/nchembio764.
- 46Tian T, Qiao S, Li X, Zhang M, Zhou J. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour Technol. 2017; 224: 41-47. https://doi.org/10.1016/j.biortech.2016.10.058.