Review of innovative approaches of thermo-mechanical refrigeration systems using low grade heat
Ahmad K. Sleiti
Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
Search for more papers by this authorCorresponding Author
Wahib A. Al-Ammari
Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
Correspondence
Wahib A. Al-Ammari, Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar.
Email: [email protected]
Search for more papers by this authorMohammed Al-Khawaja
Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
Search for more papers by this authorAhmad K. Sleiti
Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
Search for more papers by this authorCorresponding Author
Wahib A. Al-Ammari
Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
Correspondence
Wahib A. Al-Ammari, Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar.
Email: [email protected]
Search for more papers by this authorMohammed Al-Khawaja
Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
Search for more papers by this authorSummary
Cooling and refrigeration systems consume around 17% of the world-wide electricity. Enhancing the performance of these systems, using renewable energy resources and waste heat recovered from industrial processes, will lead to reduced fossil fuel consumption. Improvements of these systems using eco-friendly working fluids are of equal importance. Both options contribute to the minimization of the emissions of greenhouse gases and ozone depletion substances. In this paper, a detailed and comprehensive review of the innovative and improvement approaches of the thermo-mechanical refrigeration (TMR) systems is introduced and analyzed. The reviewed TMR systems include ejector-driven, organic Rankine cycle-driven, and the new novel isobaric heat-engine driven refrigeration systems. The features and limitations of each approach and system have been detailed and discussed. The improvement approaches found in literature were achieved by improving the performance of conventional systems via optimizing the operating conditions, selection of promising working fluids, introducing new integration configurations of two cycles or more, or via replacing the mechanical compression process with improved thermo-mechanical compression process. The review revealed that there is a lack in the experimental validation, especially for the innovative proposed systems. Also, simplicity and flexibility (in operating conditions, heat sources, and outputs) are major features of the TMR systems compared to the other thermal-driven cooling technologies. However, further improvements including higher coeffecient of performance (COP) and lower cost are still major challenges for TMR systems compared to the conventional vapor-compression refrigeration systems.
Supporting Information
Filename | Description |
---|---|
er5556-sup-0001-Supinfo.docxWord 2007 document , 424.7 KB | Appendix S1. Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 International Institute of Refrigeration. The Role of Refrigeration in the Global Economy. 2015.
- 2Sleiti AK. Tidal power technology review with potential applications in gulf stream. Renew Sust Energ Rev. 2017; 69: 435. https://doi.org/10.1016/j.rser.2016.11.150.
- 3Sleiti A. K., Rasras A., Jafar W., Alam M., Glushenkov M., Kronberg A. Novel Thermo Mechanical Refrigeration Cycle Utilizing Waste Heat. Paper presented at: Eleven International Conference on Thermal Engineering: Theory and Applications, Vol 2018 (2018): ICTEA 2018, Doha, Qatar. https://caos.library.ryerson.ca/index.php/ictea/article/view/243
- 4Wang J, Pan C, Luo K, Chen L, Wang J, Zhou Y. Thermal analysis of Stirling thermocompressor and its prospect to drive refrigerator by using natural working fluid. Energy Convers Manag. 2018; 177: 280-291. https://doi.org/10.1016/j.enconman.2018.09.068.
- 5Lin WY, Wu XH, Yang JL, Yang LW. Experimental study and numerical analysis of thermocompressors with annular regenerators. Int J Refrig. 2013; 36: 1376. https://doi.org/10.1016/j.ijrefrig.2013.02.006.
- 6Ibsaine R, Joffroy JM, Stouffs P. Modelling of a new thermal compressor for supercritical CO2 heat pump. Energy. 2016; 117: 530. https://doi.org/10.1016/j.energy.2016.07.017.
- 7Sarbu I, Sebarchievici C. Review of solar refrigeration and cooling systems. Energ Buildings. 2013; 67: 286-297. https://doi.org/10.1016/j.enbuild.2013.08.022.
- 8Allouhi A, Kousksou T, Jamil A, Bruel P, Mourad Y, Zeraouli Y. Solar driven cooling systems: an updated review. Renew Sust Energ Rev. 2015; 44: 159-181. https://doi.org/10.1016/j.rser.2014.12.014.
- 9Li Y, Wang RZ. Photovoltaic-powered solar cooling systems. Advances in Solar Heating and Cooling. Sawston, Cambridge: Elsevier; 2016. https://doi.org/10.1016/C2014-0-03661-1.
10.1016/B978-0-08-100301-5.00010-2 Google Scholar
- 10Lazzarin RM. Solar cooling: PV or thermal? A thermodynamic and economical analysis. Int J Refrig. 2014; 39: 38-47. https://doi.org/10.1016/j.ijrefrig.2013.05.012.
- 11Bataineh K, Taamneh Y. Review and recent improvements of solar sorption cooling systems. Energ Buildings. 2016; 128: 22-37. https://doi.org/10.1016/j.enbuild.2016.06.075.
- 12Sarbu I, Sebarchievici C. General review of solar-powered closed sorption refrigeration systems. Energy Convers Manag. 2015; 105: 103-422. https://doi.org/10.1016/j.enconman.2015.07.084.
- 13Besagni G, Mereu R, Inzoli F. Ejector refrigeration: a comprehensive review. Renew Sust Energ Rev. 2016; 53: 373-407. https://doi.org/10.1016/j.rser.2015.08.059.
- 14Tashtoush BM, Al-Nimr MA, Khasawneh MA. A comprehensive review of ejector design, performance, and applications. Appl Energy. 2019; 240: 138-172. https://doi.org/10.1016/j.apenergy.2019.01.185.
- 15Chunnanond K, Aphornratana S. Ejectors: applications in refrigeration technology. Renew Sust Energ Rev. 2004; 8(2): 129-155. https://doi.org/10.1016/j.rser.2003.10.001.
- 16Chen J, Jarall S, Havtun H, Palm B. A review on versatile ejector applications in refrigeration systems. Renew Sust Energ Rev. 2015; 49: 67-90. https://doi.org/10.1016/j.rser.2015.04.073.
- 17Chen X, Omer S, Worall M, Riffat S. Recent developments in ejector refrigeration technologies. Renew Sust Energ Rev. 2013; 19: 629-651. https://doi.org/10.1016/j.rser.2012.11.028.
- 18Little AB, Garimella S. A critical review linking ejector flow phenomena with component- and system-level performance. Int J Refrig. 2016; 70: 243-268. https://doi.org/10.1016/j.ijrefrig.2016.05.015.
- 19Rahbar K, Mahmoud S, Al-Dadah RK, Moazami N, Mirhadizadeh SA. Review of organic Rankine cycle for small-scale applications. Energy Convers Manag. 2017; 134: 135-155. https://doi.org/10.1016/j.enconman.2016.12.023.
- 20Mahmoudi A, Fazli M, Morad MR. A recent review of waste heat recovery by organic Rankine cycle. Appl Therm Eng. 2018; 143: 660-675. https://doi.org/10.1016/j.applthermaleng.2018.07.136.
- 21Xu B, Rathod D, Yebi A, Filipi Z, Onori S, Hoffman M. A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications. Renew Sust Energ Rev. 2019; 107: 145-170. https://doi.org/10.1016/j.rser.2019.03.012.
- 22Auld A, Berson A, Hogg S. Organic Rankine cycles in waste heat recovery: a comparative study. Int J Low-Carbon Technol. 2013; 8: i9-i18. https://doi.org/10.1093/ijlct/ctt033.
10.1093/ijlct/ctt033 Google Scholar
- 23Lecompte S, Huisseune H, Van Den Broek M, Vanslambrouck B, De Paepe M. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew Sust Energ Rev. 2015; 47: 448-461. https://doi.org/10.1016/j.rser.2015.03.089.
- 24Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles - a review of various applications. Renew Sust Energ Rev. 2011; 15(8): 3963-3979. https://doi.org/10.1016/j.rser.2011.07.024.
- 25Zeyghami M, Goswami DY, Stefanakos E. A review of solar thermo-mechanical refrigeration and cooling methods. Renew Sust Energ Rev. 2015; 51: 1428-1445. https://doi.org/10.1016/j.rser.2015.07.011.
- 26Yan J, Lin C, Cai W, Chen H, Wang H. Experimental study on key geometric parameters of an R134A ejector cooling system. Int J Refrig. 2016; 67: 102-108. https://doi.org/10.1016/j.ijrefrig.2016.04.001.
- 27Pounds DA, Dong JM, Cheng P, Ma HB. Experimental investigation and theoretical analysis of an ejector refrigeration system. Int J Therm Sci. 2013; 67: 200-209. https://doi.org/10.1016/j.ijthermalsci.2012.11.001.
- 28Zhu Y, Cai W, Wen C, Li Y. Numerical investigation of geometry parameters for design of high performance ejectors. Appl Therm Eng. 2009; 29: 898-905. https://doi.org/10.1016/j.applthermaleng.2008.04.025.
- 29Jia Y, Wenjian C. Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant. Energy Convers Manag. 2012; 53: 240-246. https://doi.org/10.1016/j.enconman.2011.09.002.
- 30Yapici R, Ersoy HK, Aktoprakoǧlu A, Halkaci HS, Yiǧit O. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. Int J Refrig. 2008; 31(7): 1183-1189. https://doi.org/10.1016/j.ijrefrig.2008.02.010.
- 31Poirier M, Giguère D, Sapoundjiev H. Experimental parametric investigation of vapor ejector for refrigeration applications. Energy. 2018; 162: 1287-1300. https://doi.org/10.1016/j.energy.2018.08.034.
- 32Wu H, Liu Z, Han B, Li Y. Numerical investigation of the influences of mixing chamber geometries on steam ejector performance. Desalination. 2014; 353: 15-20. https://doi.org/10.1016/j.desal.2014.09.002.
- 33Nakagawa M, Marasigan AR, Matsukawa T, Kurashina A. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger. Int J Refrig. 2011; 34: 1604-1613. https://doi.org/10.1016/j.ijrefrig.2010.07.021.
- 34Ma X, Zhang W, Omer SA, Riffat SB. Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Appl Therm Eng. 2010; 30(11–12): 1320-1325. https://doi.org/10.1016/j.applthermaleng.2010.02.011.
- 35Zhu L, Yu J, Zhou M, Wang X. Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems. Renew Energy. 2014; 63: 735-740. https://doi.org/10.1016/j.renene.2013.10.030.
- 36Zhou M, Wang X, Yu J. Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers. Energy Convers Manag. 2013; 73: 278-284. https://doi.org/10.1016/j.enconman.2013.04.028.
- 37Opgenorth MJ, Sederstrom D, McDermott W, Lengsfeld CS. Maximizing pressure recovery using lobed nozzles in a supersonic ejector. Appl Therm Eng. 2012; 37: 396-402. https://doi.org/10.1016/j.applthermaleng.2011.11.057.
- 38Chang YJ, Chen YM. Enhancement of a steam-driven ejector using a novel application of the petal nozzle. J Chin Inst Eng. 2000; 23: 677-686. https://doi.org/10.1080/02533839.2000.9670589.
- 39Zhu Y, Jiang P. Bypass ejector with an annular cavity in the nozzle wall to increase the entrainment: experimental and numerical validation. Energy. 2014; 68: 174-181. https://doi.org/10.1016/j.energy.2014.02.046.
- 40Grazzini G, Mariani A. A simple program to design a multi-stage jet-pump for refrigeration cycles. Energy Convers Manag. 1998; 39(16–18): 1827-1834. https://doi.org/10.1016/s0196-8904(98)00070-3.
- 41Kong F, Kim HD. Analytical and computational studies on the performance of a two-stage ejector-diffuser system. Int J Heat Mass Transf. 2015; 85: 71-87. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.117.
- 42Dennis M, Garzoli K. Use of variable geometry ejector with cold store to achieve high solar fraction for solar cooling. Int J Refrig. 2011; 34(7): 1626-1632. https://doi.org/10.1016/j.ijrefrig.2010.08.006.
- 43Gutiérrez A, León N. Conceptual development and CFD evaluation of a high efficiency - variable geometry ejector for use in refrigeration applications. Energy Procedia. 2014; 57: 2544-2553. https://doi.org/10.1016/j.egypro.2014.10.265.
10.1016/j.egypro.2014.10.265 Google Scholar
- 44Chen Z, Jin X, Shimizu A, Hihara E, Dang C. Effects of the nozzle configuration on solar-powered variable geometry ejectors. Sol Energy. 2017; 150: 275-286. https://doi.org/10.1016/j.solener.2017.04.017.
- 45Smolka J, Palacz M, Bodys J, et al. Performance comparison of fixed- and controllable-geometry ejectors in a CO2 refrigeration system. Int J Refrig. 2016; 65: 172-182. https://doi.org/10.1016/j.ijrefrig.2016.01.025.
- 46Huang BJ, Jiang CB, Hu FL. Ejector performance characteristics and design analysis of jet refrigeration system. J Eng Gas Turbines Power. 1985; 107(3): 792-802. https://doi.org/10.1115/1.3239802.
- 47Sun DW. Variable geometry ejectors and their applications in ejector refrigeration systems. Energy. 1996; 21: 919-929. https://doi.org/10.1016/0360-5442(96)00038-2.
- 48Aidoun Z, Ouzzane M. The effect of operating conditions on the performance of a supersonic ejector for refrigeration. Int J Refrig. 2004; 27(8): 974-984. https://doi.org/10.1016/j.ijrefrig.2004.05.006.
- 49Khalil A, Fatouh M, Elgendy E. Ejector design and theoretical study of R134a ejector refrigeration cycle. Int J Refrig. 2011; 34(7): 1684-1698. https://doi.org/10.1016/j.ijrefrig.2011.01.005.
- 50Yan J, Chen G, Liu C, Tang L, Chen Q. Experimental investigations on a R134a ejector applied in a refrigeration system. Appl Therm Eng. 2017; 110: 1061-1065. https://doi.org/10.1016/j.applthermaleng.2016.09.046.
- 51Shen S, Qu X, Zhang B, Riffat S, Gillott M. Study of a gas-liquid ejector and its application to a solar-powered bi-ejector refrigeration system. Appl Therm Eng. 2005; 25(17–18): 2891-2902. https://doi.org/10.1016/j.applthermaleng.2005.02.012.
- 52Sankarlal T, Mani A. Experimental studies on an ammonia ejector refrigeration system. Int Commun Heat Mass Transfer. 2006; 33(2): 224-230. https://doi.org/10.1016/j.icheatmasstransfer.2005.08.002.
- 53Hassanain M, Elgendy E, Fatouh M. Ejector expansion refrigeration system: ejector design and performance evaluation. Int J Refrig. 2015; 58: 1-13. https://doi.org/10.1016/j.ijrefrig.2015.05.018.
- 54Chen W, Shi C, Zhang S, Chen H, Chong D, Yan J. Theoretical analysis of ejector refrigeration system performance under overall modes. Appl Energy. 2017; 185: 2074-2084. https://doi.org/10.1016/j.apenergy.2016.01.103.
- 55Nehdi E, Kairouani L, Elakhdar M. A solar ejector air-conditioning system using environment-friendly working fluids. Int J Energy Res. 2008; 40: 873-884. https://doi.org/10.1002/er.1413.
- 56Sun DW. Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Convers Manag. 1999; 40: 873-884. https://doi.org/10.1016/S0196-8904(98)00151-4.
- 57Cizungu K, Mani A, Groll M. Performance comparison of vapour jet refrigeration system with environment friendly working fluids. Appl Therm Eng. 2001; 21: 585-598. https://doi.org/10.1016/S1359-4311(00)00070-3.
- 58Selvaraju A, Mani A. Analysis of an ejector with environment friendly refrigerants. Appl Therm Eng. 2004; 24: 827-838. https://doi.org/10.1016/j.applthermaleng.2003.08.016.
- 59Roman R, Hernandez JI. Performance of ejector cooling systems using low ecological impact refrigerants. Int J Refrig. 2011; 34: 1707-1716. https://doi.org/10.1016/j.ijrefrig.2011.03.006.
- 60Yu J, Chen H, Ren Y, Li Y. A new ejector refrigeration system with an additional jet pump. Appl Therm Eng. 2006; 26(2–3): 312-319. https://doi.org/10.1016/j.applthermaleng.2005.04.018.
- 61Yu J, Li Y. A theoretical study of a novel regenerative ejector refrigeration cycle. Int J Refrig. 2007; 30(3): 464-470. https://doi.org/10.1016/J.IJREFRIG.2006.08.011.
- 62Zhang B, Shen S. A theoretical study on a novel bi-ejector refrigeration cycle. Appl Therm Eng. 2006; 26(5–6): 622-626. https://doi.org/10.1016/j.applthermaleng.2005.06.015.
- 63Nguyen VM, Riffat SB, Doherty PS. Development of a solar-powered passive ejector cooling system. Appl Therm Eng. 2001; 21(2): 157-168. https://doi.org/10.1016/S1359-4311(00)00032-6.
- 64Srisastra P, Aphornratana S, Sriveerakul T. Development of a circulating system for a jet refrigeration cycle. Int J Refrig. 2008; 31(5): 921-929. https://doi.org/10.1016/j.ijrefrig.2007.09.002.
- 65Huang BJ, Hu SS, Lee SH. Development of an ejector cooling system with thermal pumping effect. Int J Refrig. 2006; 29(3): 476-484. https://doi.org/10.1016/j.ijrefrig.2005.08.004.
- 66Sun DW, Eames IW, Aphornratana S. Evaluation of a novel combined ejector - absorption refrigeration cycle - I: computer simulation. Int J Refrig. 1996; 19(3): 172-180. https://doi.org/10.1016/0140-7007(96)00010-2.
- 67Yu J, Song X, Ma M. Theoretical study on a novel R32 refrigeration cycle with a two-stage suction ejector. Int J Refrig. 2013; 36(1): 166-172. https://doi.org/10.1016/j.ijrefrig.2012.09.017.
- 68Bai T, Yan G, Yu J. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector. Energy. 2015; 84: 325-335. https://doi.org/10.1016/j.energy.2015.02.104.
- 69Ahmadzadeh A, Salimpour MR, Sedaghat A. Thermal and exergoeconomic analysis of a novel solar driven combined power and ejector refrigeration (CPER) system. Int J Refrig. 2017; 83: 143-156. https://doi.org/10.1016/j.ijrefrig.2017.07.015.
- 70Hong D, Chen G, Tang L, He Y. A novel ejector-absorption combined refrigeration cycle. Int J Refrig. 2011; 34(7): 1596-1603. https://doi.org/10.1016/j.ijrefrig.2010.07.007.
- 71Wu S, Eames IW. A novel absorption-recompression refrigeration cycle. Appl Therm Eng. 1998; 18: 1149-1157. https://doi.org/10.1016/S1359-4311(98)00041-6.
- 72Agrawal BK, Karimi MN. Thermodynamic performance assessment of a novel waste heat based triple effect refrigeration cycle. Int J Refrig. 2012; 35(6): 1647-1656. https://doi.org/10.1016/j.ijrefrig.2012.05.020.
- 73Liang X, Zhou S, Deng J, He G, Cai D. Thermodynamic analysis of a novel combined double ejector-absorption refrigeration system using ammonia/salt working pairs without mechanical pumps. Energy. 2019; 185: 895-909. https://doi.org/10.1016/j.energy.2019.07.104.
- 74Bergander M. Refrigeration Cycle with Two-Phase Condensing Ejector. Paper presented at: International Refrigeration and Air Conditioning Conference. Purdue. 2006.
- 75Kairouani L, Elakhdar M, Nehdi E, Bouaziz N. Use of ejectors in a multi-evaporator refrigeration system for performance enhancement. Int J Refrig. 2009; 32(6): 1173-1185. https://doi.org/10.1016/j.ijrefrig.2009.03.009.
- 76Zhou N, Wang X, Chen Z, Wang Z. Experimental study on organic Rankine cycle for waste heat recovery from low-temperature flue gas. Energy. 2013; 55: 216-225. https://doi.org/10.1016/j.energy.2013.03.047.
- 77Boumaraf L, Haberschill P, Lallemand A. Investigation of a novel ejector expansion refrigeration system using the working fluid R134a and its potential substitute R1234yf. Energy Econ. 2014; 45: 148-159. https://doi.org/10.1016/j.ijrefrig.2014.05.021.
- 78Aghazadeh Dokandari D, Setayesh Hagh A, Mahmoudi SMS. Thermodynamic investigation and optimization of novel ejector-expansion CO2/NH3 cascade refrigeration cycles (novel CO2/NH3 cycle). Int J Refrig. 2014; 46(94): 26-36. https://doi.org/10.1016/j.ijrefrig.2014.07.012.
- 79Xing M, Yan G, Yu J. Performance evaluation of an ejector subcooled vapor-compression refrigeration cycle. Energy Convers Manag. 2015; 92: 431-436. https://doi.org/10.1016/j.enconman.2014.12.091.
- 80Sarkar J. Performance analyses of novel two-phase ejector enhanced multi-evaporator refrigeration systems. Appl Therm Eng. 2017; 110: 1635-1642. https://doi.org/10.1016/j.applthermaleng.2016.08.163.
- 81Rostamnejad H, Zare V. Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: thermodynamic analysis and optimization. Int J Refrig. 2019; 101: 56-70. https://doi.org/10.1016/j.ijrefrig.2019.02.031.
- 82Sanaye S, Emadi M, Refahi A. Thermal and economic modeling and optimization of a novel combined ejector refrigeration cycle. Int J Refrig. 2019; 98: 480-493. https://doi.org/10.1016/j.ijrefrig.2018.11.007.
- 83Zhu Y, Jiang P. Hybrid vapor compression refrigeration system with an integrated ejector cooling cycle. Int J Refrig. 2012; 35(1): 68-78. https://doi.org/10.1016/j.ijrefrig.2011.09.003.
- 84Wang J, Dai Y, Sun Z. A theoretical study on a novel combined power and ejector refrigeration cycle. Int J Refrig. 2009; 32(6): 1186-1194. https://doi.org/10.1016/j.ijrefrig.2009.01.021.
- 85Mosaffa AH, Farshi LG. Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications. Renew Energy. 2018; 120: 134-150. https://doi.org/10.1016/j.renene.2017.12.099.
- 86Boyaghchi FA, Chavoshi M, Sabeti V. Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid. Energy. 2015; 91: 685-699. https://doi.org/10.1016/j.energy.2015.08.082.
- 87Yang X, Zheng N, Zhao L, Deng S, Li H, Yu Z. Analysis of a novel combined power and ejector-refrigeration cycle. Energy Convers Manag. 2016; 108: 266-274. https://doi.org/10.1016/j.enconman.2015.11.019.
- 88Saitoh T, Yamada N, Wakashima S. Solar Rankine cycle system using scroll expander. J Environ Eng. 2007; 2: 708-719. https://doi.org/10.1299/jee.2.708.
10.1299/jee.2.708 Google Scholar
- 89Lemort V, Legros A. Positive displacement expanders for organic Rankine cycle systems. Organic Rankine Cycle (ORC) Power Systems. Sawston, Cambridge: Elsevier Ltd; 2016.
- 90Qiu G, Shao Y, Li J, Liu H, Riffat SB. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel. 2012; 96: 374-382. https://doi.org/10.1016/j.fuel.2012.01.028.
- 91Yin J, Yu Z, Zhang C, Tian M, Han J. Thermodynamic analysis and multi-objective optimization of a novel power/cooling cogeneration system for low-grade heat sources. Energy Convers Manag. 2018; 166: 64-73. https://doi.org/10.1016/j.enconman.2018.04.028.
- 92Wang J, Dai Y, Zhang T, Ma S. Parametric analysis for a new combined power and ejector-absorption refrigeration cycle. Energy. 2009; 34(10): 1587-1593. https://doi.org/10.1016/j.energy.2009.07.004.
- 93Rostamzadeh H, Ghaebi H, Parikhani T. Thermodynamic and thermoeconomic analysis of a novel combined cooling and power (CCP) cycle. Appl Therm Eng. 2018; 139: 474-487. https://doi.org/10.1016/j.applthermaleng.2018.05.001.
- 94Alexis GK. Performance parameters for the design of a combined refrigeration and electrical power cogeneration system. Int J Refrig. 2007; 30(6): 1097-1103. https://doi.org/10.1016/j.ijrefrig.2006.12.013.
- 95Yang X, Zhao L. Thermodynamic analysis of a combined power and ejector refrigeration cycle using Zeotropic mixtures. Energy Procedia. 2015; 75: 1033-1036. https://doi.org/10.1016/j.egypro.2015.07.369.
- 96Ghaebi H, Parikhani T, Rostamzadeh H, Farhang B. Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles. Energy. 2017; 139: 262-276. https://doi.org/10.1016/j.energy.2017.07.154.
- 97Rostamzadeh H, Ebadollahi M, Ghaebi H, Amidpour M, Kheiri R. Energy and exergy analysis of novel combined cooling and power (CCP) cycles. Appl Therm Eng. 2017; 124: 152-169. https://doi.org/10.1016/j.applthermaleng.2017.06.011.
- 98Avadhanula V. K., Sen Lin C., Johnson T. Testing a 50kW ORC at different heating and cooling source conditions to map the performance characteristics. Paper presented at: SAE Technical Papers. 2013, doi: https://doi.org/10.4271/2013-01-1649.
- 99Peterson RB, Wang H, Herron T. Performance of a small-scale regenerative Rankine power cycle employing a scroll expander. Proc Inst Mech Eng Part A J Power Energy. 2008; 222(3): 271-282. https://doi.org/10.1243/09576509JPE546.
- 100Lemort V, Quoilin S, Cuevas C, Lebrun J. Testing and modeling a scroll expander integrated into an organic Rankine cycle. Appl Therm Eng. 2009; 29(14–15): 3094-3102. https://doi.org/10.1016/j.applthermaleng.2009.04.013.
- 101Wang H, Peterson RB, Herron T. Experimental performance of a compliant scroll expander for an organic Rankine cycle. Proc Inst Mech Eng Part A J Power Energy. 2009; 223: 863-872. https://doi.org/10.1243/09576509JPE741.
- 102Declaye S, Quoilin S, Guillaume L, Lemort V. Experimental study on an open-drive scroll expander integrated into an ORC (organic Rankine cycle) system with R245fa as working fluid. Energy. 2013; 55: 173-183. https://doi.org/10.1016/J.ENERGY.2013.04.003.
- 103Twomey B, Jacobs PA, Gurgenci H. Dynamic performance estimation of small-scale solar cogeneration with an organic Rankine cycle using a scroll expander. Appl Therm Eng. 2013; 51: 1307-1316. https://doi.org/10.1016/j.applthermaleng.2012.06.054.
- 104Chang JC, Chang CW, Hung TC, Lin JR, Huang KC. Experimental study and CFD approach for scroll type expander used in low-temperature organic Rankine cycle. Appl Therm Eng. 2014; 73: 1444-1452. https://doi.org/10.1016/j.applthermaleng.2014.08.050.
- 105Mathias JA, Johnston JR, Cao J, Priedeman DK, Christensen RN. Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of, an Organic rankine cycle. J Energy Resour Technol. 2009; 131:012201. https://doi.org/10.1115/1.3066345.
- 106Bracco R, Clemente S, Micheli D, Reini M. Experimental tests and modelization of a domestic-scale organic Rankine cycle. Energy. 2012; 58: 107-116. https://doi.org/10.1016/j.energy.2012.12.016.
- 107Guangbin L, Yuanyang Z, Qichao Y, Le W, Bin T, Liansheng L. Theoretical and experimental research on scroll expander used in small-scale organic Rankine cycle system. Proc Inst Mech Eng Part E J Process Mech Eng. 2015; 229: 25-35. https://doi.org/10.1177/0954408913506701.
- 108M. A. Tarique. Experimental Investigation of Scroll Based Organic Rankine Systems. Canada: University of Ontario Institute of Technology; 2011.
- 109Miao Z, Xu J, Yang X, Zou J. Operation and performance of a low temperature organic Rankine cycle. Appl Therm Eng. 2015; 75: 1065-1075. https://doi.org/10.1016/j.applthermaleng.2014.10.065.
- 110Gao P, Jiang L, Wang LW, Wang RZ, Song FP. Simulation and experiments on an ORC system with different scroll expanders based on energy and exergy analysis. Appl Therm Eng. 2015; 75: 880-888. https://doi.org/10.1016/j.applthermaleng.2014.10.044.
- 111Yun E, Kim D, Yoon SY, Kim KC. Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel. Appl Energy. 2015; 145: 246-254. https://doi.org/10.1016/j.apenergy.2015.02.022.
- 112Hsu SW, Chiang HWD, Yen CW. Experimental investigation of the performance of a hermetic screw-expander organic Rankine cycle. Energies. 2014; 7: 6172-6185. https://doi.org/10.3390/en7096172.
- 113Zhang YQ et al. Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine. Energy. 2014; 77: 499-508. https://doi.org/10.1016/j.energy.2014.09.034.
- 114Tang H, Wu H, Wang X, Xing Z. Performance study of a twin-screw expander used in a geothermal organic Rankine cycle power generator. Energy. 2015; 90: 631-642. https://doi.org/10.1016/j.energy.2015.07.093.
- 115Wang XD, Zhao L, Wang JL, Zhang WZ, Zhao XZ, Wu W. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa. Sol Energy. 2010; 84: 353-364. https://doi.org/10.1016/j.solener.2009.11.004.
- 116Zheng N, Zhao L, Wang XD, Tan YT. Experimental verification of a rolling-piston expander that applied for low-temperature organic Rankine cycle. Appl Energy. 2013; 112: 1265-1274. https://doi.org/10.1016/j.apenergy.2012.12.030.
- 117Kang SH. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid. Energy. 2012; 41(1): 514-524. https://doi.org/10.1016/j.energy.2012.02.035.
- 118Li J, Pei G, Li Y, Wang D, Ji J. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures. Energy. 2012; 38(1): 85-95. https://doi.org/10.1016/j.energy.2011.12.032.
- 119Pei G, Li J, Li Y, Wang D, Ji J. Construction and dynamic test of a small-scale organic Rankine cycle. Energy. 2011; 36: 3215-3223. https://doi.org/10.1016/j.energy.2011.03.010.
- 120Li M, Wang J, He W, et al. Construction and preliminary test of a low-temperature regenerative organic Rankine cycle (ORC) using R123. Renew Energy. 2013; 57: 216-222. https://doi.org/10.1016/j.renene.2013.01.042.
- 121Alshammari F, Pesyridis A, Karvountzis-Kontakiotis A, Franchetti B, Pesmazoglou Y. Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance. Appl Energy. 2018; 215: 543-555. https://doi.org/10.1016/j.apenergy.2018.01.049.
- 122Hung TC. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers Manag. 2001; 42: 539-553. https://doi.org/10.1016/S0196-8904(00)00081-9.
- 123Drescher U, Brüggemann D. Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants. Appl Therm Eng. 2007; 27: 223-228. https://doi.org/10.1016/j.applthermaleng.2006.04.024.
- 124Mago PJ, Chamra LM, Somayaji C. Performance analysis of different working fluids for use in organic Rankine cycles. Proc Inst Mech Eng Part A J Power Energy. 2007; 221: 255-263. https://doi.org/10.1243/09576509JPE372.
- 125Hung TC, Wang SK, Kuo CH, Pei BS, Tsai KF. A study of organic working fluids on system efficiency of an orc using low-grade energy sources. Energy. 2010; 35: 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025.
- 126Wang EH, Zhang HG, Fan BY, Ouyang MG, Zhao Y, Mu QH. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy. 2011; 36: 3406-3418. https://doi.org/10.1016/j.energy.2011.03.041.
- 127Bu XB, Li HS, Wang LB. Performance analysis and working fluids selection of solar powered organic Rankine-vapor compression ice maker. Sol Energy. 2013; 95: 271-278. https://doi.org/10.1016/j.solener.2013.06.024.
- 128Liu Q, Duan Y, Yang Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy. 2013; 63: 123-132. https://doi.org/10.1016/j.energy.2013.10.035.
- 129Zheng N, Wei J, Zhao L. Analysis of a solar Rankine cycle powered refrigerator with zeotropic mixtures. Sol Energy. 2018; 162: 57-66. https://doi.org/10.1016/j.solener.2018.01.011.
- 130Kim KH, Perez-Blanco H. Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration. Appl Therm Eng. 2015; 91: 964-974. https://doi.org/10.1016/j.applthermaleng.2015.04.062.
- 131Saleh B. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy. J Adv Res. 2016; 7: 651-660. https://doi.org/10.1016/j.jare.2016.06.006.
- 132Chen T, Zhuge W, Zhang Y, Zhang L. A novel cascade organic Rankine cycle (ORC) system for waste heat recovery of truck diesel engines. Energy Convers Manag. 2017; 138: 210-223. https://doi.org/10.1016/j.enconman.2017.01.056.
- 133Aphornratana S, Sriveerakul T. Analysis of a combined Rankine-vapour-compression refrigeration cycle. Energy Convers Manag. 2010; 51(12): 2557-2564. https://doi.org/10.1016/j.enconman.2010.04.016.
- 134Wang H, Peterson R, Herron T. Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle). Energy. 2011; 36: 4809-4820. https://doi.org/10.1016/j.energy.2011.05.015.
- 135Wang L, Roskilly AP, Wang R. Solar powered cascading cogeneration cycle with ORC and adsorption technology for electricity and refrigeration. Heat Transfer Eng. 2014; 35: 1028-1034. https://doi.org/10.1080/01457632.2013.863067.
- 136Karellas S, Braimakis K. Energy–exergy analysis and economic investigation of a cogeneration and trigeneration ORC–VCC hybrid system utilizing biomass fuel and solar power. Energy Convers Manag. 2016; 107: 103-113. https://doi.org/10.1016/j.enconman.2015.06.080.
- 137Ahmed Z, Mahanta DK. Thermodynamic analysis of combined ORC-VCR powered by waste energy from diesel engine. Int J Sci Res. 2017; 6: 2619-2623.
- 138Lu Y, Wang Y, Dong C, Wang L, Roskilly AP. Design and assessment on a novel integrated system for power and refrigeration using waste heat from diesel engine. Appl Therm Eng. 2015; 91: 591-599. https://doi.org/10.1016/j.applthermaleng.2015.08.057.
- 139Jiang L et al. Investigation on an innovative cascading cycle for power and refrigeration cogeneration. Energy Convers Manag. 2017; 145: 20-29. https://doi.org/10.1016/j.enconman.2017.04.086.
- 140Al-Mousawi FN, Al-Dadah R, Mahmoud S. Novel system for cooling and electricity: four different integrated adsorption-ORC configurations with two expanders. Energy Convers Manag. 2017; 152: 72-87. https://doi.org/10.1016/j.enconman.2017.09.044.
- 141Chaiyat N, Wakaiyang Y, Inthavideth X. Enhancement efficiency of organic Rankine cycle by using sorption system. Appl Therm Eng. 2017; 128: 368-379. https://doi.org/10.1016/j.applthermaleng.2017.05.028.
- 142Mohammadi A, Kasaeian A, Pourfayaz F, Ahmadi MH. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Appl Therm Eng. 2017; 11: 397-406. https://doi.org/10.1016/j.applthermaleng.2016.09.098.
- 143Li H, Bu X, Wang L, Long Z, Lian Y. Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy. Energ Buildings. 2013; 65: 167-172. https://doi.org/10.1016/j.enbuild.2013.06.012.
- 144Asim M, Leung MKH, Shan Z, Li Y, Leung DYC, Ni M. Thermodynamic and thermo-economic analysis of integrated organic Rankine cycle for waste heat recovery from vapor compression refrigeration cycle. Energy Procedia. 2017; 143: 192-198. https://doi.org/10.1016/j.egypro.2017.12.670.
- 145Glushenkov M, Sprenkeler M, Kronberg A, Kirillov V. Single-piston alternative to Stirling engines. Appl Energy. 2012; 97: 743-748. https://doi.org/10.1016/j.apenergy.2011.12.050.
- 146Touré A, Stouffs P. Modeling of the Ericsson engine. Energy. 2014; 76: 445-452. https://doi.org/10.1016/j.energy.2014.08.030.
- 147Kim Y., Shin D. K., Lee J. H. A New Ericsson Cycle Comprising a Scroll Expander and a Scroll Compressor for Power and Refrigeration Applications. Paper presented at: International Refrigeration and Air Conditioning Conference. 2004.
- 148Glushenkov M, Kronberg A, Knoke T, Kenig EY. Isobaric expansion engines: new opportunities in energy conversion for heat engines, pumps and compressors. Energies. 2018; 11: 154. https://doi.org/10.3390/en11010154.