Fine Gas Purification Approaches for High Purity Hydrogen Production from Ammonia
Corresponding Author
George. C. Bandlamudi
Department of New Materials, Zentrum für Brennstoffzellen Technik, Center for Fuel Cell Technology, Carl-Benz-Strasse 201, 47057 Duisburg, Germany
Search for more papers by this authorMarcel Wetegrove
Leibniz-Institut für Plasmaforschung und Technology e.V. (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
Search for more papers by this authorLaurence N. Warr
Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 16/17a, 17487 Greifswald, Germany
Search for more papers by this authorJens Wartmann
Department of New Materials, Zentrum für Brennstoffzellen Technik, Center for Fuel Cell Technology, Carl-Benz-Strasse 201, 47057 Duisburg, Germany
Search for more papers by this authorAngela Kruth
Leibniz-Institut für Plasmaforschung und Technology e.V. (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
Search for more papers by this authorCorresponding Author
George. C. Bandlamudi
Department of New Materials, Zentrum für Brennstoffzellen Technik, Center for Fuel Cell Technology, Carl-Benz-Strasse 201, 47057 Duisburg, Germany
Search for more papers by this authorMarcel Wetegrove
Leibniz-Institut für Plasmaforschung und Technology e.V. (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
Search for more papers by this authorLaurence N. Warr
Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 16/17a, 17487 Greifswald, Germany
Search for more papers by this authorJens Wartmann
Department of New Materials, Zentrum für Brennstoffzellen Technik, Center for Fuel Cell Technology, Carl-Benz-Strasse 201, 47057 Duisburg, Germany
Search for more papers by this authorAngela Kruth
Leibniz-Institut für Plasmaforschung und Technology e.V. (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
Search for more papers by this authorAbstract
This review aims to evaluate the state-of-the-art in purifying hydrogen from green ammonia. Green ammonia contains 17.8% of H2 and enables efficient liquid storage and transport of hydrogen produced from renewable electricity. Back-conversion of ammonia to hydrogen may be carried out by several routes, whereby thermal ammonia cracking is one of the most efficient approaches. In the conversion of ammonia at high pressures, it is only possible to achieve complete conversion at very high temperatures (≈800 °C). Therefore, the separation of ammonia in the low percentage range (e.g., <0.001%) is an important task. For mobility applications wherein, polymer electrolyte membrane fuel cells are to be fed with cracked H2 (from NH3), fine purity must be achieved, in agreement with ISO 14687-2. In such a context, ammonia is particularly important, with a permissible concentration of 0.100 ppm. The main feasible routes for ultrafine purification are presented, namely, 1) permeation membranes and 2) absorbents, as well as a third route via 3) biological scrubber, and discussed with regard to efficiency, availability, and cost. Current technology gaps are also identified and an outlook is given toward new innovative approaches.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 M. Noussan, P. P. Raimondi, R. Scita, M. Hafner, Sustainability 2020, 13, 298.
- 2 D. Husarek, J. Schmugge, S. Niessen, Int. J. Hydrogen Energy 2021, 46, 38008.
- 3 Compendium of Hydrogen Energy, Volume 2: Hydrogen Storage, Distribution and Infrastructure, Vol. 2 (Eds: R. B. Gupta, A. Basile, T.N. Veziroğlu), Woodhead Publishing, Sawston, Cambridge 2015.
- 4 H. Kobayashi, A. Hayakawa, K. D. Kunkuma, A. Somarathne, E. C. Okafor, Proc. Combust. Inst. 2019, 37, 109.
- 5 A. Valera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, P. J. Bowen, Prog. Energy Combust. Sci. 2018, 69, 63.
- 6 K. Aika, H. Kobayashi, in CO2 Free Ammonia as an Energy Carrier: Japan's Insights, Springer Nature, Singapore 2022.
- 7Hydrogen Fuel Quality Specifications for Polymer Electrolyte Fuel Cells in Road Vehicles Report to the Safety, Codes and Standards Program, Fuel Cell Technologies Office U.S. Department of Energy, 2016.
- 8 K. E. Lamb, M. D. Dolan, D. F. Kennedy, Int. J. Hydrogen Energy 2019, 44, 3580.
- 9 F. E. Nigbur, in Ammoniak-Cracker Zur Brenngasversorgung Von Brennstoffzellen Experimentelle Und Simulative Untersuchungen, Cuvillier Verlag, Göttingen 2021.
- 10 K. McCullough, P.-H. Chiang, J. D. Jimenez, J. A. Lauterbach, Materials 2020, 13, 1869.
- 11 C. Chen, Y. Chen, A. M. Ali, W. Luo, J. Wen, L. Zhang, H. Zhang, Chem. Eng. Technol. 2020, 43, 719.
- 12 I. Lucentini, G. G. Colli, C. D. Luzi, I. Serrano, O. M. Martinez, J. Llorca, Appl. Catal., B 2021, 286, 119896.
- 13 C. H. Speth, T. L. Wind, P. J. Dahl. US20200123006A1, 2020.
- 14 S. Chatterjee, R. K. Parsapur, K.-W. Huang, ACS Energy Lett. 2021, 6, 4390.
- 15 X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang, J. Shen, J. Power Sources 2007, 165, 739.
- 16 S. Oyama, D. Lee, P. Hacarlioglu, R. Saraf, J. Membr. Sci. 2004, 244, 45.
- 17
H. Yin, A. C. K. Yip, Catalysts 2017, 7, 297.
10.3390/catal7100297 Google Scholar
- 18 S. Adhikari, S. Fernando, Ind. Eng. Chem. Res. 2006, 45, 875.
- 19 D. Alique, D. Martinez-Diaz, R. Sanz, J. A. Calles, Membranes 2018, 8, 5.
- 20 S. Tosti, C. Cavezza, M. Fabbricino, L. Pontoni, V. Palma, C. Ruocco, Chem. Eng. J. 2015, 275, 366.
- 21 https://www.finanzen.net/rohstoffe/palladiumpreis (accessed: June 2023).
- 22 Y. S. Cheng, K. L. Yeung, J. Membr. Sci. 1999, 158, 127.
- 23 D. Alique, M. Imperatore, R. Sanz, J. A. Calles, M. Giacinti Baschetti, Int. J. Hydrogen Energy 2016, 41, 19430.
- 24 G. Zeng, A. Goldbach, L. Shi, H. Xu, Int. J. Hydrogen Energy 2012, 37, 6012.
- 25 S. Y. Kong, D. H. Kim, D. Henkensmeier, H.-J. Kim, H. C. Ham, J. Han, S. P. Yoon, C. W. Yoon, S. H. Choi, Sep. Purif. Technol. 2017, 179, 486.
- 26
D. Alique. in Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications, 2018, 27–72.
10.1007/978-3-319-59906-9_2 Google Scholar
- 27 R. Bredesen, K. Jordal, O. Bolland, Chem. Eng. Process.: Process Intensif. 2004, 43, 1129.
- 28 I. P. Mardilovich, E. Engwall, Y. H. Ma, Desalination 2002, 144, 85.
- 29 H. Jia, P. Wu, G. Zeng, E. Salas-Colera, A. Serrano, G. R. Castro, H. Xu, C. Sun, A. Goldbach, J. Membr. Sci. 2017, 544, 151.
- 30 M. R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, S. Mohebi, Chem. Eng. Process.: Process Intensif. 2017, 121, 24.
- 31 S. Bellini, Y. Sun, F. Gallucci, A. Caravella, Membranes 2018, 8, 82.
- 32 R. E. Buxbaum, A. B. Kinney, Ind. Eng. Chem. Res. 1996, 35, 530.
- 33 Y. Guo, C. Tang, X. Wang, C. Wang, L. Fu, Chin. Phys. B 2019, 28, 048102.
- 34 X. Duan, D. Kim, K. Narasimharao, S. Al-Thabaiti, M. Tsapatsis, Chem. Commun. 2021, 57, 580.
- 35 W. Biltz, Z. Anorg. Allg. Chem. 1923, 130, 93.
- 36 C. Pengilley, in Membranes For Gas Separation, University of Bath 2015.
- 37 R. Ash, R. M. Barrer, R. T. Lowson, J. Chem. Soc., Faraday Trans. 1 1973, 69, 2166.
- 38 M. B. Rao, S. Sircar, J. Membr. Sci. 1996, 110, 109.
- 39 P. Pandey, R. S. Chauhan, Prog. Polym. Sci. 2001, 26, 853.
- 40 D. De Meis, M. Richetta, E. Serra, Interceram 2018, 67, 16.
- 41
M. A. Carreon, in Membranes for Gas Separations, World Scientific Publishing Company, Singapore 2017.
10.1142/10385 Google Scholar
- 42 L. Silva, A. Plaza, J. Romero, J. Sanchez, G. Rios, J. Chil. Chem. Soc. 2008, 53, 1404.
- 43 C. Tien, B. V. Ramarao, Sep. Purif. Technol. 2014, 136, 303.
- 44 B. Han, C. Butterly, W. Zhang, J.-z. He, D. Chen, J. Clean. Prod. 2021, 283, 124611.
- 45 A. J. Rieth, Y. Tulchinsky, M. Dinca, J. Am. Chem. Soc. 2016, 138, 9401.
- 46 H. Jasuja, G. W. Peterson, J. B. Decoste, M. A. Browe, K. S. Walton, Chem. Eng. Sci. 2015, 124, 118.
- 47 K. Vikrant, V. Kumar, K.-H. Kim, D. Kukkar, J. Mater. Chem. A 2017, 5, 22877.
- 48 A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, H. C. Foley, Microporous Mesoporous Mater. 2015, 218, 15.
- 49 H. Yang, A. Züttel, S. Kim, Y. Ko, W. Kim, ChemNanoMat 2017, 3, 794.
- 50 R. Z. Sorensen, J. S. Hummelshoj, A. Klerke, J. B. Reves, T. Vegge, J. K. Norskov, C. H. Christensen, J. Am. Chem. Soc. 2008, 130, 8660.
- 51 J. W. Makepeace, T. He, C. Weidenthaler, T. R. Jensen, F. Chang, T. Vegge, P. Ngene, Y. Kojima, P. E. de Jongh, P. Chen, W. I. F. David, Int. J. Hydrogen Energy 2019, 44, 7746.
- 52 T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, Y. Kojima, ACS Appl. Energy Mater. 2018, 1, 232.
- 53 M. Kubota, K. Matsuo, R. Yamanouchi, H. Matsuda, J. Chem. Eng. Jpn. 2014, 47, 542.
- 54 K. Minami, A. Takahashi, K. Sakurai, H. Mikasa, M. Takasaki, N. Doshu, K. Aoyama, T. Nakamura, R. Iwai, T. Kawamoto, Biosyst. Eng. 2022, 216, 98.
- 55 B. Biswas, L. N. Warr, E. F. Hilder, N. Goswami, M. M. Rahman, J. G. Churchman, K. Vasilev, G. Pan, R. Naidu, Chem. Soc. Rev. 2019, 48, 3740.
- 56 S. Dey, N. Haripavan, S. R. Basha, G. V. Babu, Curr. Res. Chem. Biol. 2021, 1, 100005.
- 57 S. J. Oosting, in Wheat Straw as Ruminant Feed: Effect of Supplementation and Ammonia Treatment on Voluntary Intake and Nutrient Availability, Wageningen University and Research 1993.
- 58 Z. Wu, CN101148414A, 2008.
- 59 D. Shang, L. Bai, S. Zeng, H. Dong, H. Gao, X. Zhang, S. Zhang, J. Chem. Technol. Biotechnol. 2018, 93, 1228.
- 60 L. Yuan, H. Gao, H. Jiang, S. Zeng, T. Li, B. Ren, X. Zhang, J. Mol. Liq. 2021, 323, 114601.
- 61 M. Wang, L. Feng, Sep. Purif. Technol. 2023, 312, 123292.
- 62 C. Van der Heyden, K. Solon, P. Demeyer, E. I. P. Volcke, Biosyst. Eng. 2020, 191, 85.
- 63 C. H. Christensen, R. Z. Sørensen, T. Johannessen, U. J. Quaade, K. Honkala, T. D. Elmøe, R. Køhler, J. K. Nørskov, J. Mater. Chem. 2005, 15, 4106.