Facile Sulfuration Route to Enhance the Supercapacitor Performance of 3D Petal-like NiV-Layered Double Hydroxide
Guiquan Liu
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorCorresponding Author
Guorong Wang
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorXin Guo
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorXuqiang Hao
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorKai Wang
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorCorresponding Author
Zhiliang Jin
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorGuiquan Liu
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorCorresponding Author
Guorong Wang
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorXin Guo
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorXuqiang Hao
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorKai Wang
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorCorresponding Author
Zhiliang Jin
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021 P. R. China
Search for more papers by this authorAbstract
The charge conductivity properties and ionic delivery of pseudocapacitive materials are important factors for the charge storage process. Herein, the new petal-like S-NiV-layered double hydroxide (LDH) materials are successfully synthesized by a presynthetic solvothermal reaction and a sulfidation modification procedure. The specific capacitance of the new petal-like S-NiV-LDHs electrode reaches 1403 F g−1 when the current density is 1 A g−1, and this is attributed to Ni3S2 formed on the surface of NiV-LDHs. When the current density is up to 20 A g−1, the rate performance of the new petal-like S-NiV-LDHs electrode is 65.04%. It can be seen that the comprehensive electrochemical performance of the new petal-like S-NiV-LDHs is better than the petal-like NiV-LDHs before modification. When the power density of the S-NiV-LDHs//activated carbon asymmetric supercapacitor cell is 2278.48 W kg−1, its energy density is 20 Wh kg−1. The innovation of this work lies in that, based on the microstructure of petal-like NiV-LDHs with rich mesoporous structure, the surface of petal-like NiV-LDHs is slightly sulfurized, which makes the new petal-like S-NiV-LDHs electrode material have smaller electrochemical impedance, richer oxidation states, richer chemical active sites, better energy storage, and cycle stability.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1T. Palaniselvam, J. B. Baek, 2D Mater. 2015, 2, 032002.
- 2M. Huang, F. Li, F. Dong, Y. X. Zhang, L. L. Zhang, J. Mater. Chem. A 2015, 3, 21380.
- 3Y. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257.
- 4L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Mater. Today 2019, 25, 35.
- 5F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrini, Science 2015, 347, 1246501.
- 6G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 2012, 41, 797.
- 7X. Wu, L. Jiang, C. Long, T. Wei, Z. Fan, Adv. Funct. Mater. 2015, 25, 1648.
- 8F. Mo, H. X. Zhang, Y. X. Wang, J. Energy Storage 2022, 49, 104122.
- 9D. Jia, D. Jiang, Y. Zheng, H. Tan, X. Cao, F. Liu, L. Yue, Y. Sun, J. Liu, Nanoscale 2019, 11, 2812.
- 10X. Huang, Z. Zhang, H. Li, Y. Zhao, H. Wang, T. Ma, J. Alloys Compd. 2017, 722, 662.
- 11Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Y. Zeng, W. Zhang, Y. Zhang, D. Qi, Adv. Mater. 2018, 30, 1704531.
- 12M. Yang, P. Wang, Y. Li, S. Tang, X. Lin, H. Zhang, Z. Zhu, F. Chen, Appl. Catal., B 2022, 306, 121065.
- 13H. Gong, Y. Li, H. Li, Z. Jin, Langmuir 2022, 38, 2117.
- 14I. Shakir, M. Shahid, M. Nadeem, D. J. Kang, Electrochim. Acta 2012, 72, 134.
- 15X. Li, D. Du, Y. Zhang, W. Xing, Q. Xue, Z. Yan, J. Mater. Chem. A 2017, 5, 15460.
- 16Z. Yang, J. Wei, G. Zeng, H. Zhang, X. Tan, C. Ma, X. C. Li, Z. H. Li, C. Zhang, Coord. Chem. Rev. 2019, 386, 154.
- 17L. Li, R. Li, S. Gai, F. He, P. Yang, J. Mater. Chem. A 2014, 2, 8758.
- 18H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei, J. Feng, J. Mater. Chem. A 2018, 6, 15040.
- 19K. Yang, T. Liu, D. Xiang, Y. Li, Z. Jin, Sep. Purif. Technol. 2022, 298, 121564.
- 20X. Lin, S. Du, C. Li, G. Li, Y. Li, F. Chen, P. Fang, Catal. Lett. 2020, 7, 1898.
- 21M. Zhang, D. Jiang, L. Liao, Z. Cai, W. Huang, J. Liu, J. Alloys Compd. 2022, 920, 165858.
- 22C. Mondal, M. Ganguly, P. K. Manna, S. M. Yusuf, T. Pal, Langmuir 2013, 29, 9179.
- 23G. Wang, Y. Li, L. Xu, Z. Jin, Y. Wang, Renewable Energy 2020, 162, 535.
- 24M. Yang, K. Wang, Y. Li, K. Yang, Z. Jin, Appl. Surf. Sci. 2021, 548, 149212.
- 25P. Zhou, C. Wang, Y. Liu, Z. Wang, P. Wang, X. Qin, X. Zhang, Y. Dai, M. H. Whangbo, B. Huang, Chem. Eng. J. 2018, 351, 119.
- 26A. M. Patil, V. C. Lokhande, A. C. Lokhande, N. R. Chodankar, T. Ji, J. H. Kim, C. D. Lokhande, RSC Adv. 2016, 6, 68388.
- 27S. Nandhini, A. J. C. Mary, G. Muralidharan, Appl. Surf. Sci. 2018, 449, 485.
- 28Z. Wang, J. Li, X. Tian, X. Wang, Y. Yu, K. A. Owusu, L. He, L. Mai, ACS Appl. Mater. Interfaces 2016, 8, 19386.
- 29X. Yang, G. Wang, D. Zhang, H. Zhang, Q. Yan, M. Zhu, K. Ye, K. Zhu, K. Cheng, J. Yan, D. Cao, Int. J. Hydrogen Energy 2019, 44, 226.
- 30M. Zhu, Q. Yan, Q. Lu, Y. Xue, Y. Yan, J. Yin, K. Zhu, K. Cheng, K. Ye, J. Yan, D. Cao, J. Electroanal. Chem. 2020, 866, 114134.
- 31P. Liu, M. Yang, S. Zhou, Y. Huang, Y. Zhu, Electrochim. Acta 2019, 294, 383.
- 32T. Yan, X. Zhang, H. Liu, Z. Jin, Chin. J. Struct. Chem. 2022, 41, 2201047.
- 33D. Li, X. Ma, P. Su, S. Yang, Z. Jiang, Y. Li, Z. Jin, Mol. Catal. 2021, 516, 111990.
- 34Z. Fan, X. Zhang, Y. Li, X. Guo, Z. Jin, J. Ind. Eng. Chem. 2022, 110, 491.
- 35Q. Liu, J. Huang, Y. Zhao, L. Cao, K. Li, N. Zhang, D. Yang, L. Feng, L. Feng, Nanoscale 2019, 11, 8855.
- 36S. Wang, S. Lai, P. Li, T. Gao, K. Sun, J. Power Sources 2019, 436, 226.
- 37J. Xu, S. Gai, F. He, N. Niu, P. Gao, Y. Chen, P. Yang, J. Mater. Chem. A 2014, 2, 1022.
- 38H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei, J. Feng, J. Power Sources 2018, 378, 248.
- 39W. D. He, C. G. Wang, H. Q. Li, X. L. Deng, X. J. Xu, T. Zhai, Adv. Energy Mater. 2017, 7, 1700983.
- 40S. D. Liu, S. C. Lee, U. M. Patil, C. Ray, K. V. Sankar, K. Zhang, A. Kundu, J. H. Park, S. C. Jun, J. Mater. Chem. A 2017, 5, 4543.
- 41X. Y. He, Q. Liu, J. Y. Liu, R. M. Li, H. S. Zhang, R. Chen, J. Wang, Chem. Eng. J. 2017, 325, 134.
- 42L. Li, K. S. Hui, K. N. Hui, T. Zhang, J. Fu, Y. R. Cho, Chem. Eng. J. 2018, 348, 338.
- 43Y. Mo, Q. Ru, J. Chen, X. Song, L. Guo, S. Hu, S. Peng, J. Mater. Chem. A 2015, 3, 19765.
- 44M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. Sing, Pure Appl. Chem. 2015, 87, 1051.
- 45K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S. O. Steinmueller, S. H. Tolbert, B. M. Smarsly, B. Dunn, T. Brezesinski, J. Am. Chem. Soc. 2010, 132, 6982.
- 46R. Wang, J. Lang, P. Zhang, Z. Lin, X. Yan, Adv. Funct. Mater. 2015, 25, 2270.
- 47S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng, X. Zhang, J. Mater. Chem. A 2015, 3, 21277.
- 48W. Wang, N. Zhang, Z. Shi, Z. Ye, Q. Gao, M. Zhi, Z. Hong, Chem. Eng. J. 2018, 338, 55.
- 49C. Jing, X. Liu, H. Yao, P. Yan, G. Zhao, X. Bai, B. Dong, F. Dong, S. Li, Y. Zhang, CrystEngComm 2019, 21, 4934.
- 50M. Yu, R. Liu, J. Liu, S. Li, Y. Ma, Small 2019, 13, 1702616.
- 51G. Wang, Y. Li, T. Zhao, Z. Jin, New J. Chem. 2021, 45, 251.
- 52Y. Tang, Y. Liu, S. Yu, S. Mu, S. Xiao, Y. Zhao, F. Gao, J. Power Sources 2014, 256, 160.
- 53C. Zhao, S. Tian, P. Nie, T. Deng, F. Ren, L. Chang, Ionics 2020, 26, 1389.
- 54G. Wang, Z. Jin, W. Zhang, J. Colloid Interface Sci. 2020, 577, 115.
- 55L. Q. Mai, A. Minhas-Khan, X. Tian, K. M. Hercule, Y. L. Zhao, X. Lin, X. Xu, Nat. Commun. 2013, 4, 2923.