Internal Reforming Solid Oxide Fuel Cell System Operating under Direct Ethanol Feed Condition
Mohamed A. Elharati
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorMartinus Dewa
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorQusay Bkour
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorCorresponding Author
A. Mohammed Hussain
Technology Planning and Research Department, Nissan Technical Centre North America, Farmington Hills, MI, 48335 USA
Search for more papers by this authorYohei Miura
Nissan Research Centre, Nissan Motor Corporation Limited, Kanagawa, 237-8523 Japan
Search for more papers by this authorSong Dong
Nissan Research Centre, Nissan Motor Corporation Limited, Kanagawa, 237-8523 Japan
Search for more papers by this authorYosuke Fukuyama
Nissan Research Centre, Nissan Motor Corporation Limited, Kanagawa, 237-8523 Japan
Search for more papers by this authorNilesh Dale
Technology Planning and Research Department, Nissan Technical Centre North America, Farmington Hills, MI, 48335 USA
Search for more papers by this authorOscar G. Marin-Flores
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorCorresponding Author
Su Ha
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorMohamed A. Elharati
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorMartinus Dewa
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorQusay Bkour
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorCorresponding Author
A. Mohammed Hussain
Technology Planning and Research Department, Nissan Technical Centre North America, Farmington Hills, MI, 48335 USA
Search for more papers by this authorYohei Miura
Nissan Research Centre, Nissan Motor Corporation Limited, Kanagawa, 237-8523 Japan
Search for more papers by this authorSong Dong
Nissan Research Centre, Nissan Motor Corporation Limited, Kanagawa, 237-8523 Japan
Search for more papers by this authorYosuke Fukuyama
Nissan Research Centre, Nissan Motor Corporation Limited, Kanagawa, 237-8523 Japan
Search for more papers by this authorNilesh Dale
Technology Planning and Research Department, Nissan Technical Centre North America, Farmington Hills, MI, 48335 USA
Search for more papers by this authorOscar G. Marin-Flores
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorCorresponding Author
Su Ha
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorAbstract
A button-typed single solid oxide fuel cell (SOFC) with an internal catalytic reforming layer is tested for direct-fed ethanol SOFC technology. This catalytic functional layer consists of 5 wt% Rh/CeZrO2 catalyst and is applied in front of conventional nickel–yttria–stabilized zirconia (Ni–YSZ) anode to convert the ethanol fuel (35 vol%) into a hydrogen-rich gas stream via the ethanol steam reforming reaction under harsh operating conditions for 24 h (steam-to-carbon [S/C] ratio = 3.1, 600 °C, and weight hourly space velocity [WHSV] of 176 h−1). The X-ray powder diffraction (XRD) analysis and transmission electron microscopy (TEM) images reveal highly dispersed Rh nanoparticles with an average size of 2 nm over CeZrO2 support. Unlike the button cell without the catalytic functional layer, the electrochemical performance of the button cell with the catalytic functional layer illustrates a high coking resistance while maintaining a good power density output. The proposed SOFC with the catalytic functional layer is a viable solution for future electric cars with bioethanol-fed SOFC technology.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000350-sup-0001-SuppData-S1.docx185.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Hardman, A. Chandan, E. Shiu, R. Steinberger-Wilckens, Int. J. Hydrogen Energy 2016, 41, 6171.
- 2 Honda Automobiles, 2019 Honda Clarity Fuel Cell – Hydrogen Powered Car | Honda, https://automobiles.honda.com/clarity-fuel-cell (accessed: March 2020).
- 3Toyota Mirai – The Turning Point, https://ssl.toyota.com/mirai/patent.html (accessed: March 2020).
- 4J. J. Brey, R. Brey, A. F. Carazo, Int. J. Hydrogen Energy 2017, 42, 13382.
- 5J. J. Brey, A. F. Carazo, R. Brey, Renewable Sustainable Energy Rev. 2018, 82, 2893.
- 6J.-G. Kim, M. Kuby, Int. J. Hydrogen Energy 2012, 37, 5406.
- 7F. Auprêtre, C. Descorme, D. Duprez, Catal. Commun. 2002, 3, 263.
- 8S. Cavallaro, V. Chiodo, A. Vita, S. Frenia, J. Power Sources 2003, 123, 10.
- 9K. Zhao, Q. Bkour, B.-H. Kim, M. Grant Norton, S. Ha, Energy Technol. 2019, 7, 48.
- 10K. Zhao, X. Hou, Q. Bkour, M. Grant Nortona, S. Ha, Appl. Catal. B: Environ. 2018, 224, 500.
- 11Z. Zhan, S. A. Barnett, Science 2005, 308, 844.
- 12P. Boldrin, E. Ruiz-Trejo, J. Mermelstein, J. M. Bermúdez Menéndez, T. Ramírez Reina, N. P. Brandon, Chem. Rev. 2016, 116, 13633.
- 13J. B. Goodenough, Y.-H. Huang, J. Power Sources 2007, 173, 1.
- 14S. P. S. Shaikh, A. Muchtar, M. R. Somalu, Renewable Sustainable Energy Rev. 2015, 51, 1.
- 15M. S. Khan, S.-B. Lee, R.-H. Song, J.-W. Lee, T.-H. Lim, S.-J. Park, Ceram. Int. 2016, 42, 35.
- 16J. G. Lee, O. S. Jeon, H. J. Hwang, J. Jang, Y. Lee, S. H. Hyun, Y. G. Shul, Electrochim. Acta 2016, 191, 677.
- 17Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S. D. Li, Energy 2016, 113, 432.
- 18W. Wang, J. Qu, P. Sérgio, B. Julião, Z. Shao, Energy 2019, 7, 33.
- 19J. Xiao, Y. Xie, J. Liu, M. Liu, J. Power Sources 2014, 268, 508.
- 20M. C. Steil, S. D. Nobrega, S. Georges, P. Gelin, S. Uhlenbruck, F. C. Fonseca, Appl. Energy 2017, 199, 180.
- 21T. Takeguchi, S. D. Nobrega, S. Georges, P. Gelin, S. Uhlenbruck, F. C. Fonseca, Catal. Today 2003, 84, 217.
- 22S. McIntosh, J. M. Vohs, R. J. Gorte, Electrochem. Solid-State Lett. 2003, 6, A240.
- 23E. Nikolla, J. Schwank, S. Linic, J. Catal. 2009, 263, 220.
- 24H. Kan, H. Lee, Appl. Catal. B: Environ. 2010, 97, 108.
- 25W. Wang, C. Su, R. Ran, B. Zhao, Z. Shao, M. O. Tade, S. Liu, ChemSusChem 2014, 7, 1719.
- 26W. Wang, Y. Chen, F. Wang, M. O. Tade, Z. Shao, Chem. Eng. Sci. 2015, 126, 22.
- 27S. S.-Y. Lin, D. H. Kim, S. Y. Ha, Catal. Lett. 2008, 122, 295.
- 28T. B. Shoynkhorova, P. A. Simonov, D. I. Potemkin, P. V. Snytnikov, V. D. Belyaev, A. V. Ishchenko, D. A. Svintsitskiy, V. A. Sobyanin, Appl. Catal. B: Environmental 2018, 237, 237.
- 29D. Zanchet, J. B. O. Santos, S. Damyanova, J. M. R. Gallo, J. M. C. Bueno, ACS Catal. 2015, 5, 3841.
- 30Y. Man, C. P. Liu, Catal. Today 2011, 165, 64.
- 31C. J. Houtman, M. A. Barteau, J. Catal. 1991, 130, 528.
- 32M. Li, W. Guo, R. Jiang, L. Zhao, X. Lu, H. Zhu, D. Fu, H. Shan, J. Phys. Chem. C 2010, 114, 21493.
- 33Q. V. Bkour, F. Che, K.-M. Lee, C. Zhou, N. Akter, J. A. Boscoboinik, K. Zhao, J. T. Gray, S. R. Saunders, M. G. Norton, J.-S. McEwen, T. Kim, S. Ha, Appl. Catal. B: Environ. 2020, 266, 118626.
- 34M. M. Abo-Zeid, M. S. El-Deab, A. AbdelKareem, O. A. El-Kady, A. M. Daher, Int. J. Electrochem. Sci. 2016, 11, 3137.
- 35S. Diethelm, J. V. Herle, J. Power Sources 2011, 196, 7355.
- 36X. Yuan, H. Chen, W. Tian, J. Shi, W. Zhou, F. Cheng, S.-D. Li, Z. Shao, Renewable Energy 2020, 147, 602.