Sustainable Porous Carbon with High Specific Surface Area from Soybean Shell via Hydrothermal Carbonization with H3PO4 for Electric Double-Layer Capacitor Applications
Yan Wu
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorCorresponding Author
Jing-Pei Cao
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorXiao-Yan Zhao
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorQi-Qi Zhuang
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorZhi Zhou
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorMing Zhao
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorXin Cui
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorYun-Peng Zhao
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorXian-Yong Wei
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorYan Wu
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorCorresponding Author
Jing-Pei Cao
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorXiao-Yan Zhao
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorQi-Qi Zhuang
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorZhi Zhou
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorMing Zhao
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorXin Cui
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorYun-Peng Zhao
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorXian-Yong Wei
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorAbstract
Soybean shell (SS), as the byproduct of soybeans, is converted into porous carbon (PC) with a high specific surface area (SSA) via hydrothermal carbonization with H3PO4 followed by KOH activation. No obvious effect on the crystal structure of PC can be found by addition of H3PO4 during the hydrothermal process. However, the SSA of PC increases remarkably compared with hydrothermal carbonization without H3PO4, as H3PO4 assists in hydrothermal carbonization dehydration reactions and creates some pores beneficial for KOH activation. The SSA of the obtained PC reaches 2523 m2 g−1, and the hierarchical pore structure is mainly in 0.6–50 nm. The sample prepared by hydrothermal carbonization with 10 wt% H3PO4 and activation by KOH with the ratio of KOH/10-hydrochar 3 under 700 °C exhibits a specific capacitance of 301 F g−1 in 6 m KOH electrolyte at the current density of 0.1 A g−1. It also has an excellent cycling stability with the specific capacitance remaining at 93.8% after 15 000 cycles. Furthermore, the energy density is 8.1 Wh kg−1 in the two-electrode system. These results display that PC based on SS is a promising electrode material for the electric double-layer capacitor.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901103-sup-0001-SuppData-S1.docx1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Y. Li, K. B. Xu, L. An, F. R. Jiang, X. Y. Zhou, J. M. Yang, Z. G. Chen, R. J. Zou, J. Q. Hu, J. Mater. Chem. A 2014, 2, 1443.
- 2Y. Wu, J. P. Cao, X. Y. Zhao, Z. Q. Hao, Q. Q. Zhuang, J. S. Zhu, X. Y. Wang, X. Y. Wei, Electrochim. Acta 2017, 252, 397.
- 3A. G. Kannan, A. Samuthirapandian, D. W. Kim, J. Power Sources 2017, 337, 65.
- 4Q. H. Wang, J. L. Du, Y. X. Zhu, J. Q. Yang, J. Chen, C. Wang, L. Li, L. F. Jiao, J. Power Sources 2015, 284, 138.
- 5W. Li, J. Liu, D. Y. Zhao, Nat. Rev. Mater. 2016, 1, 16023.
- 6X. L. Su, M. Y. Cheng, L. Fu, J. H. Yang, X. C. Zheng, X. X. Guan, J. Power Sources 2017, 362, 27.
- 7Z. Q. Hao, J. P. Cao, X. Y. Zhao, Y. Wu, J. S. Zhu, Y. L. Dang, Q. Q. Zhuang, X. Y. Wei, J. Colloid Interf. Sci. 2018, 513, 20.
- 8G. Lota, K. Fic, E. Frackowiak, Energy Environ. Sci. 2011, 4, 1592.
- 9R. Soni, S. N. Bhange, E. Athire, R. Chetry, S. Kurungot, ChemElectroChem 2019, 6, 1861.
- 10Z. Q. Hao, J. P. Cao, Y. Wu, X. Y. Zhao, L. Zhou, X. Fan, Y. P. Zhao, X. Y. Wei, Fuel Process. Technol. 2017, 162, 45.
- 11F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 2014, 26, 2219.
- 12Z. H. Li, D. C. Wu, Y. R. Liang, R. W. Fu, K. Matyjaszewski, J. Am. Chem. Soc. 2014, 136, 4805.
- 13L. Wei, G. Yushin, Nano Energy 2012, 1, 552.
- 14S. Marta, M. Robert, Energy Environ. Sci. 2014, 7, 1250.
- 15C. Falco, J. P. Marco-Lozar, D. Salinas-Torres, E. Morallón, D. Cazorla-Amorós, M. M. Titirici, D. Lozano-Castelló, Carbon 2013, 62, 346.
- 16J. Deng, M. M. Li, Y. Wang, Green Chem. 2016, 18, 4824.
- 17C. C. Dai, J. F. Wan, J. Yang, S. S. Qu, T. Y. Jin, F. W. Ma, J. Q. Shao, Appl. Surf. Sci. 2018, 444, 105.
- 18A. Jain, S. Jayaraman, R. Balasubramanian, M. P. Srinivasan, J. Mater. Chem. A 2014, 2, 520.
- 19A. J. Romero-Anaya, M. A. Lillo-Ródenas, C. S.-M. de Lecea, A. Linares-Solano, Carbon 2012, 50, 3158.
- 20Y. S. Yun, M. H. Park, S. J. Hong, M. E. Lee, Y. W. Park, H. J. Jin, ACS Appl. Mater. Inter. 2015, 7, 3684.
- 21C. L. Long, L. L. Jiang, X. L. Wu, Y. T. Jiang, D. R. Yang, C. K. Wang, T. Wei, Z. J. Fan, Carbon 2015, 93, 412.
- 22J. Marit, D. Frank, Carbon 1998, 36, 1085.
- 23X. Du, W. Zhao, Y. Wang, C. Y. Wang, M. M. Chen, T. Qi, C. Hua, M. G. Ma, Bioresour. Technol. 2013, 149, 31.
- 24M. M. Titirici, R. J. White, C. Falco, M. Sevilla, Energy Environ. Sci. 2012, 5, 6796.
- 25Z. Q. Hao, J. P. Cao, Y. Wu, X. Y. Zhao, Q. Q. Zhuang, X. Y. Wang, X. Y. Wei, J. Power Sources 2017, 361, 249.
- 26B. B. Chang, Y. Z. Guo, Y. C. Li, B. C. Yang, RSC Adv. 2015, 5, 72019.
- 27J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 2006, 313, 1760.
- 28C. Peng, X. B. Yan, R. T. Wang, J. W. Lang, Y. J. Ou, Q. J. Xue, Electrochim. Acta 2013, 87, 401.
- 29M. Sevilla, A. B. Fuertes, Carbon 2013, 56, 155.
- 30Y. T. Liu, K. X. Li, Y. Liu, L. T. Pu, Z. H. Chen, S. G. Deng, J. Mater. Chem. A 2015, 3, 21149.
- 31F. Razmjooei, K. P. Singh, M. Y. Song, J. S. Yu, Carbon 2014, 78, 257.
- 32T. T. Guan, J. H. Zhao, G. L. Zhang, J. L. Wang, D. D. Zhang, K. X. Li, ACS Sustain. Chem. Eng. 2018, 7, 2116.
- 33B. Liu, Y. J. Liu, H. B. Chen, M. Yang, H. M. Li, J. Power Sources 2017, 341, 309.
- 34T. Ouyang, K. Cheng, Y. Y. Gao, S. Y. Kong, K. Ye, G. L. Wang, D. X. Cao, J. Mater. Chem. A 2016, 4, 9832.
- 35R. Farma, M. Deraman, A. Awitdrus, I. A. Talib, E. Taer, N. H. Basri, J. G. Manjunatha, M. M. Ishak, B. N. Dollah, S. A. Hashmi, Bioresour. Technol. 2013, 132, 254.
- 36L. J. Xie, G. H. Sun, F. Y. Su, X. Q. Guo, Q. Q. Kong, X. M. Li, X. H. Huang, L. Wan, W. Song, K. X. Li, C. X. Lv, C. M. Chen, J. Mater. Chem. A 2016, 4, 1637.
- 37P. Hao, Z. H. Zhao, Y. H. Leng, J. Tian, Y. H. Sang, R. I. Boughton, C. P. Wong, H. Liu, B. Yang, Nano Energy 2015, 15, 9.
- 38Y. Qing, Y. T. Jiang, H. Lin, L. X. Wang, A. J. Liu, Y. L. Cao, R. Sheng, Y. Guo, C. W. Fan, S. Zhang, D. Z. Jia, Z. J. Fan, J. Mater. Chem. A 2019, 7, 6021.
- 39J. C. Wang, S. Kaskel, J. Mater. Chem. A 2012, 22, 23710.
- 40C. Portet, G. Yushin, Y. Gogotsi, Carbon 2007, 45, 2511.
- 41V. L. Kuznetsov, Y. V. Butenko, A. L. Chuvilin, A. I. Romanenko, A. V. Okotrub, Chem. Phys. Lett. 2001, 336, 397.
- 42M. Nazarian-Samani, S. Haghighat-Shishavan, M. Nazarian-Samani, M. S. Kim, B. W. Cho, S. H. Oh, S. F. Kashani-Bozorg, K. B. Kim, J. Power Sources 2017, 372, 286.
- 43K. Wang, Y. Song, R. Yan, N. Zhao, X. D. Tian, X. Li, Q. G. Guo, Z. J. Liu, Appl. Surf. Sci. 2017, 394, 569.
- 44E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, F. Béguin, Carbon 2006, 44, 2498.
- 45L. Celine, P. Cristelle, C. John, T. Pierre-Louis, G. Yury, S. Patrice, J. Am. Chem. Soc. 2008, 130, 2730.
- 46P. L. Taberna, P. Simon, J. F. Fauvarque, J. Electrochem. Soc. 2003, 150, A292.
- 47M. B. Wu, P. Li, Y. Li, J. Liu, Y. Wang, RSC Adv. 2015, 5, 16575.
- 48X. J. He, P. H. Ling, J. S. Qiu, M. X. Yu, X. Y. Zhang, C. Yu, M. D. Zheng, J. Power Sources 2013, 240, 109.
- 49X. Li, W. Xing, S. P. Zhuo, J. Zhou, F. Li, S. Z. Qiao, G. Q. Lu, Bioresour. Technol. 2011, 102, 1118.
- 50X. J. He, P. H. Ling, M. X. Yu, X. T. Wang, X. Y. Zhang, M. D. Zheng, Electrochim. Acta 2013, 105, 635.
- 51P. Hao, Z. H. Zhao, J. Tian, H. D. Li, Y. H. Sang, G. W. Yu, H. Q. Cai, H. Liu, C. P. Wong, Nanoscale 2014, 6, 12120.
- 52X. Tian, H. R. Ma, Z. Li, S. C. Yan, L. Ma, F. Yu, G. Wang, X. H. Guo, Y. Q. Ma, C. P. Wong, J. Power Sources 2017, 359, 88.
- 53Z. Wang, Y. T. Tan, Y. L. Yang, X. N. Zhao, Y. Liu, L. Y. Niu, B. Tichnell, L. B. Kong, L. Kang, Z. Liu, F. Ran, J. Power Sources 2018, 378, 499.
- 54Q. X. Xie, A. R. Zheng, S. B. Zhai, S. H. Wu, C. Xie, Y. F. Zhang, Y. F. Guan, J. Solid State Electron. 2015, 20, 449.
- 55Y. Liu, Z. J. Shi, Y. F. Gao, W. D. An, Z. Z. Cao, J. R. Liu, ACS Appl. Mater. Inter. 2016, 8, 28283.
- 56G. A. M. Ali, S. A. A. Manaf, A. Divyashree, K. F. Chong, G. Hegde, J. Energy Chem. 2016, 25, 734.