Zn-Doped Porous CoNiP Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting
ZhiCheng Cai
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Heilongjiang Provincial Public Security Bureau of Criminal Technology, Harbin, 150080 P. R. China
Search for more papers by this authorAiPing Wu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorHaiJing Yan
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorCorresponding Author
ChunGui Tian
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorDeZheng Guo
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorCorresponding Author
HongGang Fu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorZhiCheng Cai
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Heilongjiang Provincial Public Security Bureau of Criminal Technology, Harbin, 150080 P. R. China
Search for more papers by this authorAiPing Wu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorHaiJing Yan
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorCorresponding Author
ChunGui Tian
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorDeZheng Guo
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorCorresponding Author
HongGang Fu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorAbstract
The design of electrocatalysts with a favorable interface for mass transfer, adsorption, and activation of reactant is important for water splitting. Herein, the design of porous Zn-doped CoNiP arrays anchored on Ni foam (P-Zn-CoNiP/NF) as effective bifunctional electrocatalysts for overall water splitting is reported. The key to construct P-Zn-CoNiP is first the introduction of Zn species in NiCoP anchored on Ni foam (NF) followed by its selective etching in dilute HCl to leave pores and form doping in final CoNiP. The pores facilitate the mass of transfer and expose more active sites. The Zn doping can modulate the electronic structure of NiCoP. Benefited from the aforementioned characteristics, the P-Zn-CoNiP/NF possesses remarkable activity for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in 1 m KOH, which can produce a current density of 100 mA cm−2 at a low overpotential of 177 and 396 mV for HER and OER, respectively, which is superior to most non-noble metal-based catalysts. The cell assembled using P-Zn-CoNiP/NF as both cathode and anode achieves a current density of 50 mA cm−2 at a voltage of 1.71 V and can be driven by a solar cell (1.51 V), indicating its potential for practical storage of solar energy.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901079-sup-0001-SuppData-S1.docx1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chu, A. Majumdar, Nature 2012, 488, 294.
- 2G. Meng, Q. Yang, X. C. Wu, P. B. Wan, Y. P. Li, X. D. Lei, X. M. Sun, J. F. Liu, Nano Energy 2016, 30, 831.
- 3Y. Q. Zhang, B. Ouyang, J. Xu, S. Chen, R. S. Rawat, H. J. Fan, Adv. Energy Mater. 2016, 6, 1600221.
- 4G. Carlos, M. Guio, X. I. Hu, Acc. Chem. Res. 2014, 47, 2671.
- 5Z. P. Zhao, H. T. Liu, W. P. Gao, W. Xue, Z. Liu, J. Huang, X. Q. Pan, Y. Huang, J. Am. Chem. Soc. 2018, 140, 9046.
- 6J. P. Tessier, P. Palau, J. Huot, J. Alloys Compd. 2004, 376, 180.
- 7F. Kreith, R. West, J. Energy Resour. Technol. 2004, 126, 249.
- 8A. Wu, Y. Xie, H. Ma, C. G. Tian, Y. Gu, H. J. Yan, X. M. Zhang, G. Y. Yang, H. G. Fu, Nano Energy 2018, 44, 353.
- 9Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 10M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
- 11Y. Yan, B. Y. Xia, B. Zhao, X. Wang, J. Mater. Chem. A 2016, 4, 17587.
- 12Z. C. Cai, A. P. Wu, H. J. Yan, Y. L. Xiao, C. F. Chen, C. G. Tian, L. Wang, R. Wang, H. G. Fu, Nanoscale 2018, 10, 7619.
- 13X. B. Zang, C. F. Zhou, Y. J. Qin, Q. G. Shao, S. Yu, X. Q. Lin, N. Cao, Energy Technol. 2019, 7, 1900052.
- 14D. W. Wang, Q. Li, C. Han, Z. C. Xing, X. R. Yang, ACS Cent. Sci. 2018, 4, 112.
- 15Y. J. Li, H. C. Zhang, M. Jiang, Y. Kuang, M. Sun, X. Duan, Nano Res. 2016, 9, 2251.
- 16F. Zhang, Y. Pei, Y. C. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. X. Ye, J. F. Shen, Adv. Mater. Interfaces 2018, 5, 1701507.
- 17G. Tang, Y. Zeng, B. B. Wei, H. F. Liang, J. Wu, P. C. Yao, Z. C. Wang, Energy Technol. 2019, 7, 1900066.
- 18D. Y. Zhang, H. Yan, Y. Lu, K. W. Qiu, C. Y. Wang, H. Zhang, J. S. Luo, Y. S. Luo, Dalton Trans. 2014, 43, 15887.
- 19L. Yan, L. Cao, P. C. Dai, X. Gu, D. D. Liu, L. J. Li, Y. Wang, X. B. Zhao, Adv. Funct. Mater. 2017, 27, 1703455.
- 20X. H. Gao, H. Q. Zhang, G. X. Li, G. Yu, Z. L. Hong, X. C. Zhang, D. Liang, L. Zhan, Angew. Chem., Int. Ed. 2016, 55, 6290.
- 21L. Y. Wang, C. D. Gu, X. Ge, J. Zhang, H. Zhu, J. P. Tu, Adv. Mater. Interfaces 2017, 4, 1700481.
- 22H. J. Qiu, Y. Ito, W. T. Cong, Y. W. Tan, P. Liu, Angew. Chem., Int. Ed. 2015, 54, 14031.
- 23X. Q. Ji, B. P. Liu, X. Ren, X. F. Shi, A. M. Asiri, X. P. Sun, ACS Sustainable Chem. Eng. 2018, 6, 4499.
- 24H. J. Jin, X. Liu, S. M. Chen, A. Vasileff, L. Q. Li, Y. Jiao, L. Song, Y. Zheng, S. Z. Qiao, ACS Energy Lett. 2019, 4, 805.
- 25Y. Shi, Y. Zhou, D. R. Yang, W. Xu, C. Wang, F. B. Wang, J. J. Xu, X. H. Xia, H. Y. Chen, J. Am. Chem. Soc. 2017, 139, 15479.
- 26C. X. Guo, Y. Jiao, Y. Zheng, J. Luo, K. Davey, S. Z. Qiao, Chem 2019, 5, 1.
- 27X. H. Liu, B. Wei, R. Su, C. G. Zhao, D. M. Dai, X. Ma, L. L. Xu, Energy Technol. 2019, 44, 1900021.
- 28W. X. Zhu, R. Zhang, F. L. Qu, A. M. Asiri, X. P. Sun, ChemCatChem 2017, 7, 1721.
- 29B. You, Y. D. Zhang, Y. Jiao, K. Davey, S. Z. Qiao, Angew. Chem., Int. Ed. 2019, 58, 11796.
- 30R. Zhang, X. X. Wang, S. J. Yu, T. X. Wen, W. Zhu, F. X. Yang, X. N. Sun, X. K. Wang, W. P. Hu, Adv. Mater. 2017, 29, 1605502.
- 31J. Hu, W. Chen, X. Zhao, X. F. Cao, J. B. Zhu, Z. Chen, Energy Technol. 2019, 7, 190013.
- 32G. Zhang, G. C. Wang, Y. Liu, H. J. Liu, J. H. Qu, J. H. Li, J. Am. Chem. Soc. 2016, 138, 14686.
- 33X. N. Wang, R. Tong, Y. Wang, H. L. Tao, Z. H. Zhang, H. Wang, ACS Appl. Mater. Interfaces 2016, 8, 34270.
- 34C. D. Wang, J. Jiang, T. Ding, G. Chen, W. J. Xu, Q. Yang, Adv. Mater. Interfaces 2016, 3, 1500454.
- 35H. L. Wang, H. S. Cao, Y. Li, L. Li, N. Xiong, P. Kai, ChemSusChem 2017, 10, 4899.
- 36T. T. Liu, L. S. Xie, J. H. Yang, R. Kong, G. Du, A. M. Asiri, X. P. Sun, L. Chen, ChemElectroChem 2017, 4, 1840.
- 37R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Adv. Mater. 2017, 29, 1605502.
- 38X. H. Gao, H. Zhang, Q. G. Li, X. G. Yu, Z. L. Hong, X. Zhang, C. D. Liang, L. Zhan, Angew. Chem., Int. Ed. 2016, 55, 6290.
- 39C. D. Wang, J. Jiang, T. Ding, G. H. Chen, W. J. Xu, Q. Yang, Adv. Mater. Interfaces 2016, 3, 1500454.
- 40J. Yu, Q. Li, Y. Li, C. Y. Xu, L. Zhen, V. P. Dravid, Adv. Funct. Mater. 2016, 26, 7644.
- 41Q. Fu, T. Wu, G. Fu, T. L. Gao, J. C. Han, T. Yao, Y. M. Zhang, W. W. Zhong, X. J. Wang, B. Song, ACS Energy Lett. 2018, 3, 1744.
- 42H. F. Liang, A. N. Gandi, D. H. Anjum, X. B. Wang, U. Schwingenschlögl, H. Alhareef, Nano Lett. 2016, 16, 7718.
- 43C. Tang, L. F. Gan, R. Zhang, W. Lu, X. Jiang, A. M. Asiri, X. P. Sun, J. Wang, L. Chen, Nano Lett. 2016, 16, 6617.
- 44J. L. Liu, Y. Zheng, Z. Y. Wang, Z. G. Lu, A. Vasileff, S. Z. Qiao, Chem. Commun. 2018, 54, 463.
- 45X. J. Liu, W. Xi, C. Li, X. B. Li, J. Shi, Y. L. Shen, J. He, L. H. Zhang, L. Xie, X. M. Sun, P. Wang, J. Luo, L. M. Liu, Y. Ding, Nano Energy 2018, 44, 371.
- 46Y. N. Men, P. Li, J. H. Zhou, G. Z. Cheng, S. L. Chen, W. Luo, ACS Catal. 2019, 9, 3744.
- 47J. Q. Yang, W. Guo, D. Li, Q. Qin, J. Zhang, C. Y. Wei, H. M. Fan, L. L. Wu, W. J. Zheng, Electrochim. Acta. 2014, 144, 16.
- 48X. K. Kong, C. L. Zhang, S. Y. Hwang, Q. W. Chen, Z. M. Peng, Small 2017, 13, 1700334.
- 49T. T. Liu, D. N. Liu, F. L. Qu, D. X. Wang, L. Zhang, R. X. Ge, S. Hao, Y. J. Ma, G. Du, A. M. Asiri, L. Chen, X. P. Sun, Adv. Energy Mater. 2017, 7, 1700020.
- 50X. J. Liu, Z. Chang, L. Luo, T. H. Xu, X. D. Lei, J. F. Liu, X. M. Sun, Chem. Mater. 2014, 26, 1889.
- 51S. Wahl, S. M. El-Refaei, A. G. Buzanich, P. Amsalem, K. S. Lee, N. Koch, M. Doublet, N. Pinna, Adv. Energy Mater. 2019, 9, 1900328.
- 52A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 2016, 26, 4661.
- 53C. Du, L. Yang, F. L. Yang, G. Z. Cheng, W. Luo, ACS Catal. 2017, 7, 4131.
- 54Y. Pan, Y. Liu, J. C. Zhao, K. Yang, L. Liang, D. Liu, H. Hu, D. P. Liu, Y. Q. Liu, C. G. Liu, J. Mater. Chem. A 2015, 8, 1656.
- 55S. H. Bae, J. E. Kim, H. Randriamahazaka, S. Y. Moon, J. Y. Park, I. K. Oh, Adv. Energy Mater. 2016, 7, 1601492.
- 56J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 7399.
- 57T. Zhang, M. Y. Wu, D. Yan, J. Mao, H. Liu, W. B. Hu, X. W. Du, T. Ling, S. Z. Qiao, Nano Energy 2018, 43, 103.
- 58W. Li, D. H. Xiong, X. F. Gao, W. G. Song, F. Xia, L. F. Liu, Catal. Today 2017, 287, 122.
- 59T. Ling, T. Zhang, B. H. Ge, L. L. Han, L. R. Zheng, F. Lin, Z. R. Xu, W. B. Hu, X. W. Du, K. Davey, S. Z. Qiao, Adv. Mater. 2019, 31, 1807771.
- 60Z. F. Huang, J. J. Song, Y. H. Du, S. B. Xi, S. Dou, J. Nsanzimana, C. Wang, Z. C. J. Xu, X. Wang, Nat. Energy 2019, 4, 329.
- 61X. Wang, F. Li, W. Z. Li, W. B. Gao, Y. Tang, R. Li, J. Mater. Chem. A 2017, 5, 17982.
- 62J. G. Hou, B. Zhang, Z. W. Li, S. Y. Cao, Y. Q. Sun, Y. Z. Wu, Z. M. Gao, L. C. Sun, ACS Catal. 2018, 8, 4612.
- 63O. Diaz-Morales, I. Ledezma-Yanez, M. T. Koper, F. Calle-Vallejo, ACS Catal. 2015, 5, 5380.
- 64Z. Y. Chen, Y. Song, J. Y. Cai, X. S. Zheng, D. D. Han, Y. S. Wu, Y. P. Zang, S. W. Niu, Y. Liu, J. F. Zhu, X. J. Liu, G. M. Wang, Angew. Chem., Int. Ed. 2018, 57, 5076.