Ammonium Fluoride Interface Modification for High-Performance and Long-Term Stable Perovskite Solar Cells
Qianjin Zhu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorCorresponding Author
Jihuai Wu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorPengqiang Yuan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorMingjing Zhang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorYanfei Dou
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorXiaobing Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorJinjun Zou
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorWeihai Sun
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorLeqing Fan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorZhang Lan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorQianjin Zhu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorCorresponding Author
Jihuai Wu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorPengqiang Yuan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorMingjing Zhang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorYanfei Dou
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorXiaobing Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorJinjun Zou
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorWeihai Sun
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorLeqing Fan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorZhang Lan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Huaqiao University, No. 668 Jimei Avenue, Xiamen, Fujian, 361021 P.R. China
Search for more papers by this authorAbstract
As a new generation of promising photovoltaic devices, perovskite solar cells (PSCs) have rapidly evolved in efficiency from 3.8% in 2009 to 23.5% recently. Numerous studies indicate that interface defects and the recombination of charge carrier at the interface, which hinders the improvement of photovoltaic performance and stability of PSCs, remains an important research area. Herein, a novel method for modifying the interface between the electron transport layer and the perovskite layer with ammonium fluoride (NH4F) is presented. After the TiO2 film is modified with NH4F, the TiO2/perovskite interface defects are mitigated and passivated, the carrier recombination decreases, and the electron extraction and injection capacity increase. Consequently, the planar PSC interface modified with an optimal NH4F concentration maintains over 95% initial efficiency for 32 days at 20% relative humidity, and achieves a champion power conversion efficiency of 20.47%, whereas the pristine device achieves an efficiency of 18.59% under the same conditions. This work demonstrates a low-cost and efficient strategy to obtain high-performance and stable PSCs.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901017-sup-0001-SuppData-S1.docx1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Hodes, Science 2013, 342, 317.
- 2R. Service, Science 2016, 354, 1214.
- 3J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Chem. Rev. 2017, 46, 5975.
- 4H. Snaith, P. Hacke, Nat. Energy 2018, 3, 459.
- 5A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 6M. Kim, G. Kim, T. Lee, I. Choi, H. Choi, Y. Jo, Y. Yoon, J. Kim, J. Lee, D. Huh, H. Lee, S. Kwak, J. Kim, D. Kim, Joule 2019, 3, 2179.
- 7G. Wetzelaer, M. Scheepers, A. Sempere, C. Momblona, J. Avila, H. Bolink, Adv. Mater. 2015, 27, 1837.
- 8Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Adv. Mater. 2016, 28, 6734.
- 9J. Manser, M. Saidaminov, J. Christians, O. Bakr, P. Kamat, ACC. Chem. Res 2016, 49, 330.
- 10A. Buin, P. Pietsch, J. Xu, O. Voznyy, A. Ip, R. Comin, E. Sargent, ACS Nano Lett. 2014, 14, 6281.
- 11J. Xu, A. Buin, A. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. McDowell, P. Kanjanaboos, J. Sun, X. Lan, L. Quan, D. Kim, I. Hill, P. Maksymovych, E. Sargent, Nat. Commun. 2015, 6, 7081.
- 12D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. Liu, Nat. Commun. 2018, 9, 3239.
- 13A. Musiienko, P. Moravec, R. Grill, P. Praus, I. Vasylchenko, J. Pekarek, J. Tisdale, K. Ridzonova, E. Belas, L. Landova, B. Hu, E. Lukosi, M. Ahmadi, Energy Environ. Sci. 2019, 12, 1413.
- 14X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, C. Z. Xiao, J. Huang, Nat. Energy 2017, 2, 17102.
- 15K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2017, 2, 17032.
- 16Y. Tu, X. Yang, R. Su, D. Luo, Y. Cao, L. Zhao, T. Liu, W. Yang, Y. Zhang, Z. Xu, Q. Liu, J. Wu, Q. Gong, F. Mo, R. Zhu, Adv. Mater. 2018, 30, 1805085.
- 17E. Jung, N. Jeon, E. Park, C. Moon, T. Shin, T. Yang, J. Noh, J. Seo, Nature 2019, 567, 511.
- 18F. Giordano, A. Abate, J. Correa Baena, M. Saliba, T. Matsui, S. Im, S. Zakeeruddin, M. Nazeeruddin, A. Hagfeldt, M. Graetzel, Nat. Commun. 2016, 7, 10379.
- 19M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Adv. Energy Mater. 2018, 8, 1800794.
- 20T. Bu, J. Li, F. Zheng, W. Chen, X. Wen, Z. Ku, Y. Peng, J. Zhong, Y. Cheng, F. Huang, Nat. Commun. 2018, 9, 4609.
- 21H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
- 22Z. Yang, J. Dou, M. Wang, Solar RRL 2018, 2, 1800177.
- 23L. Zhu, C. Chen, F. Li, Z. Shen, Y. Weng, Q. Huang, M. Wang, J. Mater. Chem. A 2019, 7, 1124.
- 24M. Wu, Y. Liao, S. Chan, C. Lu, W. Su, Solar RRL 2018, 2, 1800072.
- 25X. Hu, X. Jiang, X. Xing, L. Nian, X. Liu, R. Huang, K. Wang, H. Yip, G. Zhou, Solar RRL 2018, 2, 1800083.
- 26P. Zhai, R. Cheng, L. Ren, Y. Huang, H. Lee, S. Feng, Solar RRL 2018, 2, 1800103.
- 27W. Wu, L. Wang, Adv. Funct. Mater. 2018, 28, 1804356.
- 28J. Xiao, C. Shi, C. Zhou, D. Zhang, Y. Li, Q. Chen, Solar RRL 2017, 1, 1700082.
- 29A. Agresti, S. Pescetelli, A. Palma, B. Martin-Garcia, L. Najafi, S. Bellani, I. Moreels, M. Prato, F. Bonaccorso, A. Di Carlo, ACS Energy Lett. 2019, 4, 1862.
- 30L. Zhu, C. Chen, Y. Weng, F. Li, Q. Lou, Sol. Energy Mater. Sol. Cells 2019, 198, 11.
- 31S. Ye, H. Rao, D. Zhang, M. Bian, Z. Zhao, F. Gu, Z. Zhao, Y. Chen, H. Zhou, Z. Liu, Z. Bian, C. Huang, Solar RRL 2018, 2, 1800084.
- 32W. Wu, J. Liao, Y. Jiang, L. Wang, D. Kuang, Small 2019, 15, 1900606.
- 33Y. Peng, W. Cai, Q. Ma, X. Zheng, Y. Wu, Q. Jiang, J. Liu, W. Zhang, Solar RRL 2018, 2, 1800133.
- 34H. Luo, J. Wu, X. Liu, Y. Yang, Q. Liu, M. Zhang, P. Yuan, W. Sun, Z. Lan, J. Lin, ACS Appl. Energy Mater. 2018, 1, 6700.
- 35R. Azmi, C. Lee, I. Jung, S. Jang, Adv. Energy Mater. 2018, 8, 1702934.
- 36C. Small, S. Chen, J. Subbiah, C. Amb, S. Tsang, T. Lai, J. Reynolds, F. So, Nat. Photonics 2011, 6, 115.
- 37R. Lopez, R. Gomez, J. Sol Gel Sci. Technol. 2011, 61, 1.
- 38W. Bi, Y. Wu, B. Zhang, J. Jin, H. Li, L. Liu, L. Xu, Q. Dai, C. Chen, H. Song, ACS Appl. Mater. Interfaces 2019, 11, 11481.
- 39C. Yang, P. Du, Z. Dai, H. Li, X. Yang, Q. Chen, ACS Appl. Mater. Interfaces 2019, 11, 14044.
- 40S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, J. Am. Chem. Soc. 2019, 141, 578.
- 41W. Zhang, J. Song, D. Wang, K. Deng, J. Wu, L. Zhang, J. Mater. Chem. C 2018, 6, 13034.
- 42J. Wu, H. Luo, Q. Liu, J. Huang, Y. Tu, J. Lin, M. Huang, Energy Technol. 2017, 5, 1814.
- 43Y. Yang, S. Feng, W. Xu, M. Li, L. Li, X. Zhang, G. Ji, X. Zhang, Z. Wang, Y. Xiong, L. Cao, B. Sun, X. Gao, ACS Appl. Mater. Interfaces 2017, 9, 23141.
- 44Z. Li, C. Mercado, M. Yang, E. Palay, K. Zhu, Chem. Commun. 2017, 53, 2467.
- 45I. Zarazua, G. Han, P. Boix, S. Mhaisalkar, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, G. Garcia-Belmonte, J. Phys. Chem. Lett. 2016, 7, 5105.
- 46Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.
- 47R. Bube, J. Appl. Phys. 1962, 33, 1733.
- 48X. Liu, J. Wu, Q. Guo, Y. Yang, H. Luo, Q. Liu, X. Wang, X. He, M. Huang, Z. Lan, J. Mater. Chem. A 2019, 7, 11764.
- 49D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu, R. Chang, Energy Environ. Sci. 2016, 9, 3071.
- 50Z. Lan, X. Xu, X. Zhang, J. Tang, L. Zhang, X. He, J. Wu, J. Mater. Chem. C 2018, 6, 334.
- 51M. Saliba, T. Matsui, J. Seo, K. Domanski, J. Correa-Baena, M. Nazeeruddin, S. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 2016, 9, 1989.