Superhydrophilic Al-Doped NiP2 Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution Reaction
Hao Tian
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorXiaodeng Wang
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorHaiyun Li
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorMingyu Pi
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 China
Search for more papers by this authorCorresponding Author
Dingke Zhang
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 China
Search for more papers by this authorCorresponding Author
Shijian Chen
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorHao Tian
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorXiaodeng Wang
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorHaiyun Li
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorMingyu Pi
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 China
Search for more papers by this authorCorresponding Author
Dingke Zhang
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 China
Search for more papers by this authorCorresponding Author
Shijian Chen
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorAbstract
The surface wettability of an electrocatalyst plays an important role in electrocatalysis of the hydrogen evolution reaction from water splitting. Herein, Al-doped NiP2 nanosheets are synthesized on carbon fiber paper (Al–NiP2 NSs/CFP) with a superhydrophilic and aerophobic surface as a hydrogen evolution reaction electrode. The Al–NiP2 NSs/CFP electrode exhibits superior hydrogen evolution activity with a low overpotential of 58 mV to achieve 10 mA cm−2 in 0.5 m H2SO4. In particular, it even exhibits better electrochemical performance than commercial Pt/C electrodes at high current densities. Theoretical calculations indicate that Al dopants can alter the electronic structures and optimize the hydrogen adsorption free energy of NiP2. The superhydrophilic and aerophobic surface favors the H2 bubbles release from the electrocatalyst surface and promotes the hydrogen evolution reaction (HER) performance at high current densities. Potential ways to fabricate efficient non-noble metal electrocatalyts for large-scale industrial hydrogen production applications are provided through electronic structure engineering and surface constructing.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900936-sup-0001-SuppData-S1.docx2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chu, A. Majumdar, Nature 2012, 488, 294.
- 2M. Pi, W. Guo, T. Wu, X. Wang, D. Zhang, S. Wang, S. Chen, J. Power Sources 2017, 364, 253.
- 3J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587.
- 4Z. Pu, Y. Xue, W. Li, I. S. Amiinu, S. Mu, New J. Chem. 2017, 41, 2154.
- 5A. Wu, Y. Xie, H. Ma, C. Tian, Y. Gu, H. Yan, X. Zhang, G. Yang, H. Fu, Nano Energy 2018, 44, 353.
- 6C. Lv, Z. Huang, Q. Yang, C. Zhang, Energy Technol. 2018, 6, 1707.
- 7H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, Angew. Chem. Int. Ed. 2015, 54, 6325.
- 8J. Zhang, Y. Liu, B. Xia, C. Sun, Y. Liu, P. Liu, D. Gao, Electrochim. Acta 2018, 259, 955.
- 9S. A. Shah, X. Shen, M. Xie, G. Zhu, Z. Ji, H. Zhou, K. Xu, X. Yue, A. Yuan, J. Zhu, Y. Chen, Small 2019, 15, e1804545.
- 10J. Wang, K. Chang, Z. Sun, J. H. Lee, B. M. Tackett, C. Zhang, J. G. Chen, C.-J. Liu, Appl. Catal. B 2019, 251, 162.
- 11Q. Zhang, Z. Jiang, B. M. Tackett, S. R. Denny, B. Tian, X. Chen, B. Wang, J. G. Chen, ACS Catal. 2019, 9, 2415.
- 12X.-D. Wang, Y.-F. Xu, H.-S. Rao, W.-J. Xu, H.-Y. Chen, W.-X. Zhang, D.-B. Kuang, C.-Y. Su, Energy Environ. Sci. 2016, 9, 1468.
- 13A. Wu, Y. Gu, Y. Xie, C. Tian, H. Yan, D. Wang, X. Zhang, Z. Cai, H. Fu, ACS Appl. Mater. Interfaces 2019, 11, 25986.
- 14A. Wu, C. Tian, H. Yan, Y. Jiao, Q. Yan, G. Yang, H. Fu, Nanoscale 2016, 8, 11052.
- 15Y. R. Zheng, P. Wu, M. R. Gao, X. L. Zhang, F. Y. Gao, H. X. Ju, R. Wu, Q. Gao, R. You, W. X. Huang, S. J. Liu, S. W. Hu, J. Zhu, Z. Li, S. H. Yu, Nat. Commun. 2018, 9, 2533.
- 16H. Yan, Y. Xie, A. Wu, Z. Cai, L. Wang, C. Tian, X. Zhang, H. Fu, Adv. Mater. 2019, 31, 1901174.
- 17Y. F. Xu, M. R. Gao, Y. R. Zheng, J. Jiang, S. H. Yu, Angew. Chem. Int. Ed. 2013, 52, 8546.
- 18H. Du, L. Xia, S. Zhu, F. Qu, F. Qu, Chem. Commun. 2018, 54, 2894.
- 19Z. Zhang, B. Lu, J. Hao, W. Yang, J. Tang, Chem. Commun. 2014, 50, 11554.
- 20Z. Pu, Q. Liu, P. Jiang, A. M. Asiri, A. Y. Obaid, X. Sun, Chem. Mater. 2014, 26, 4326.
- 21T. Wu, M. Pi, D. Zhang, S. Chen, J. Mater. Chem. A 2016, 4, 14539.
- 22W. Chen, I. K. Mishra, Z. Qin, L. Yu, H. Zhou, J. Sun, F. Zhang, S. Chen, G. E. Wenya, Y. Yu, Z. M. Wang, H.-Z. Song, Z. Ren, Electrochim. Acta 2019, 299, 756.
- 23M. Pi, T. Wu, D. Zhang, S. Chen, S. Wang, Electrochim. Acta 2016, 216, 304.
- 24M. Pi, D. Zhang, S. Wang, S. Chen, Mater. Lett. 2018, 213, 315.
- 25Z. Pu, I. S. Amiinu, S. Mu, Energy Technol. 2016, 4, 1030.
- 26T. Wu, M. Pi, D. Zhang, S. Chen, J. Power Sources 2016, 328, 551.
- 27T. Wu, M. Pi, X. Wang, W. Guo, D. Zhang, S. Chen, Appl. Surf. Sci. 2018, 427, 800.
- 28Z. Pu, Q. Liu, C. Tang, A. M. Asiri, X. Sun, Nanoscale 2014, 6, 11031.
- 29P. Jiang, Q. Liu, X. Sun, Nanoscale 2014, 6, 13440.
- 30D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. Wu, M. C. Lin, M. Guan, J. Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen, H. Dai, J. Am. Chem. Soc. 2015, 137, 1587.
- 31Y. Zhang, Y. Liu, M. Ma, X. Ren, Z. Liu, G. Du, A. M. Asiri, X. Sun, Chem. Commun. 2017, 53, 11048.
- 32T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A. M. Asiri, L. Chen, X. Sun, Adv. Energy Mater. 2017, 7, 1700020.
- 33L. Wen, Y. Sun, C. Zhang, J. Yu, X. Li, X. Lyu, W. Cai, Y. Li, ACS Appl. Energy Mater. 2018, 1, 3835.
- 34R. Zhang, C. Tang, R. Kong, G. Du, A. M. Asiri, L. Chen, X. Sun, Nanoscale 2017, 9, 4793.
- 35Y. Chen, G. Yu, W. Chen, Y. Liu, G. D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, H. Li, X. Huang, D. Wang, T. Asefa, X. Zou, J. Am. Chem. Soc. 2017, 139, 12370.
- 36Y. Luo, L. Tang, U. Khan, Q. Yu, H. M. Cheng, X. Zou, B. Liu, Nat. Commun. 2019, 10, 269.
- 37S. K. Mazloomi, N. Sulaiman, Renew. Sustain. Energy Rev. 2012, 16, 4257.
- 38Z. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li, X. Sun, X. Wang, H. Wang, J. Wang, J. Luo, X. Lei, L. Jiang, Adv. Mater. 2014, 26, 2683.
- 39Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529.
- 40X. Yu, Z. Y. Yu, X. L. Zhang, Y. R. Zheng, Y. Duan, Q. Gao, R. Wu, B. Sun, M. R. Gao, G. Wang, S. H. Yu, J. Am. Chem. Soc. 2019, 141, 7537.
- 41Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Nano Today 2017, 15, 26.
- 42M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding, S. Jin, J. Am. Chem. Soc. 2014, 136, 10053.
- 43R. Xu, R. Wu, Y. Shi, J. Zhang, B. Zhang, Nano Energy 2016, 24, 103.
- 44Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu, P. Wan, X. Sun, L. Jiang, Adv. Funct. Mater. 2015, 25, 1737.
- 45Y. Tian, J. Yu, H. Zhang, C. Wang, M. Zhang, Z. Lin, J. Wang, Electrochim. Acta 2019, 300, 217.
- 46Z. Duan, M. Pi, D. Zhang, P. Zhang, J. Deng, S. Chen, Int. J. Hydrogen Energy 2019, 44, 8062.
- 47J. Drelich, E. Chibowski, D. D. Meng, K. Terpilowski, Soft Matter 2011, 7, 9804.
- 48S. Gao, Z. Li, K. Jiang, H. Zeng, L. Li, X. Fang, X. Jia, Y. Chen, J. Mater. Chem. 2011, 21, 7281.
- 49C. Padeste, D. L. Trimm, Catal. Lett. 1993, 17, 333.
- 50H. Lei, Z. Song, D. Tan, X. Bao, X. Mu, B. Zong, E. Min, Appl. Catal. A 2001, 214, 69.
- 51X. Wang, H. Zhou, D. Zhang, M. Pi, J. Feng, S. Chen, J. Power Sources 2018, 387, 1.
- 52X. Wang, M. Pi, D. Zhang, H. Li, J. Feng, S. Chen, J. Li, ACS Appl. Mater. Interfaces 2019, 11, 14059.
- 53J. Feng, X. Wang, D. Zhang, Y. Wang, J. Wang, M. Pi, H. Zhou, J. Li, S. Chen, J. Electrochem. Soc. 2018, 165, F1323.
- 54Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, Angew. Chem. Int. Ed. 2018, 57, 5076.
- 55C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A. M. Asiri, X. Sun, J. Wang, L. Chen, Nano Lett. 2016, 16, 6617.