Vertical-Space-Limit Synthesis of Bifunctional Fe, N-Codoped 2D Multilayer Graphene Electrocatalysts for Zn-Air Battery
Chen Wang
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorCorresponding Author
Zhongfang Li
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorLikai Wang
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorXuewei Lu
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorSuwen Wang
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorXueliang Niu
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorChen Wang
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorCorresponding Author
Zhongfang Li
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorLikai Wang
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorXuewei Lu
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorSuwen Wang
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorXueliang Niu
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 P. R. China
Search for more papers by this authorAbstract
Developing a green, cost-efficient air-cathode catalyst with high oxygen evolution and reduction reaction (OER/ORR) performance for rechargeable Zn-air batteries (ZABs) has gained attention. Iron-containing nitrogen-doped graphene (Fe/N-G) that contains Fe-Nx coordination sites is prepared by pyrolyzing the complex of iron ion and PANI sheets intercalated with the unique layer gaps of H-montmorillonite nanoreactors. The transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis confirm that there are no crystalline materials, such as iron lattice, iron carbide, or iron nitride. The as-prepared Fe/N-G show a high electrocatalytic activity in ORR with a 4e− transfer process and the half-wave potential of Fe/N-G (0.877 V vs reversible hydrogen electrode—RHE), which is better than that of Pt/C in oxygen saturated 0.1 m KOH solution. In an acid electrolyte, the Fe/N-G possesses a half-wave potential similar to that of 20 wt% Pt/C. For OER, the Fe/N-G exhibits the overpotential of 400 mV versus RHE at 10 mA cm−2. However, the Fe/N-G as the air-cathode of the homemade rechargeable ZABs exhibits a high power density (156.8 mW cm−2) and an excellent long discharge–charge cycling stability (787 cycles) at 20 mA cm−2. This work provides an inspiring guideline to prepare a high-performance bifunctional air-cathode for a rechargeable ZAB.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900123-sup-0001-SuppData-S1.docx326.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. Ryu, H. Jang, J. Park, Y. Yoo, M. Park, J. Cho, Nat. Commun. 2018, 9, 3715; b) T. Takeguchi, T. Yamanaka, H. Takahashi, H. Watanabe, T. Kuroki, H. Nakanishi, Y. Orikasa, Y. Uchimoto, H. Takano, N. Ohguri, M. Matsuda, T. Murota, K. Uosaki, W. Ueda, J. Am. Chem. Soc. 2013, 135, 11125; c) P. Sun, Z. Li, S. Wang, X. Yin, J. Membr. Sci. 2018, 549, 660; d) C. Kim, B. Y. Ahn, T. S. Wei, Y. Jo, S. Jeong, Y. Choi, I. D. Kim, J. A. Lewis, ACS Nano 2018, 12, 11838; e) J. Park, M. Park, G. Nam, M. G. Kim, J. Cho, Nano Lett. 2017, 17, 3974; f) P. Titscher, J.-C. Riede, J. Wiedemann, U. Kunz, A. Kwade, Energy Technol. 2018, 6, 773.
- 2a) Y. Liu, C. Wang, Y. Lei, F. Liu, B. Tian, J. Wang, Int. J. Hydrogen Energy 2018, 43, 19460; b) W. L. Kwong, C. C. Lee, A. Shchukarev, E. Björn, J. Messinger, J. Catal. 2018, 365, 29; c) N. Chaisubanan, W. Maniwan, M. Hunsom, Energy 2017, 127, 454.
- 3a) J. C. Abrego-Martínez, Y. Wang, A. Moreno-Zuria, Q. Wei, F. M. Cuevas-Muñiz, L. G. Arriaga, S. Sun, M. Mohamedi, Electrochim. Acta 2019, 297, 230; b) H. Begum, M. S. Ahmed, S. Jeon, Electrochim. Acta 2019, 296, 235; c) Y. Zhao, J. Zhang, W. Wu, X. Guo, P. Xiong, H. Liu, G. Wang, Nano Energy 2018, 54, 129; d) X. Zhao, X. Li, Y. Yan, Y. Xing, S. Lu, L. Zhao, S. Zhou, Z. Peng, J. Zeng, Appl. Catal., B 2018, 236, 569.
- 4a) T. Zhang, Z. Li, L. Wang, P. Sun, Z. Zhang, S. Wang, ChemSusChem 2018, 11, 2730; b) T. Zhang, Z. Li, Z. Zhang, L. Wang, P. Sun, S. Wang, J. Phys. Chem. C 2018, 122, 27469; c) F. Zhu, J. Zhang, B. Yang, X. Shi, C. Lu, J. Yin, Y. Yu, X. Hu, J. Alloys Compd. 2018, 749, 433; d) P. Tan, B. Chen, H. Xu, W. Cai, W. He, M. Ni, Energy 2019, 166, 1241; e) L. Zeng, X. Cui, J. Zhang, W. Huang, L. Chen, C. Wei, J. Shi, Electrochim. Acta 2018, 275, 218.
- 5a) G.-L. Li, G.-C. Cheng, B.-B. Yang, C.-D. Liu, L.-F. Yuan, W.-W. Chen, X.-C. Xu, C. Hao, Int. J. Hydrogen Energy 2018, 43, 19451; b) T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira, A. Manthiram, Nature Commun. 2014, 5, 3949; c) T. Zhang, Z. Li, L. Wang, Z. Zhang, S. Wang, Int. J. Hydrogen Energy 2019, 44, 1610.
- 6a) S. Chao, M. Geng, Int. J. Hydrogen Energy 2016, 41, 12995; b) Y. Guo, P. Yuan, J. Zhang, Y. Hu, I. S. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu, S. Mu, ACS Nano 2018, 12, 1894; c) D. Lyu, Y. B. Mollamahale, S. Huang, P. Zhu, X. Zhang, Y. Du, S. Wang, M. Qing, Z. Q. Tian, P. K. Shen, J. Catal. 2018, 368, 279; d) J. Ding, P. Wang, S. Ji, H. Wang, V. Linkov, R. Wang, Electrochim. Acta 2019, 296, 653.
- 7a) G.-L. Chai, K. Qiu, M. Qiao, M.-M. Titirici, C. Shang, Z. Guo, Energy Environ. Sci. 2017, 10, 1186; b) H. B. Yang, J. Miao, S.-F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, L. Dai, B. Liu, Sci. Adv. 2016, 2, e1501122; c) Y. Hao, Z. Lu, G. Zhang, Z. Chang, L. Luo, X. Sun, Energy Technol. 2017, 5, 1265; d) X.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo, X.-P. Han, X.-W. Du, S.-Z. Qiao, J. Yang, Adv. Mater. 2018, 30, 1800005; e) X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li, H. Fu, Angew. Chem., Int. Ed. 2018, 57, 16166.
- 8D. Wang, W. Zhang, N. E. Drewett, X. Liu, S. J. Yoo, S.-G. Lee, J.-G. Kim, T. Deng, X. Zhang, X. Shi, W. Zheng, ACS Cent. Sci. 2018, 4, 81.
- 9a) J. L. Chen, W. B. Li, B. Q. Xu, J. Colloid Interface Sci. 2017, 502, 44; b) S. Wang, X. Yan, K.-H. Wu, X. Chen, J.-M. Feng, P. Lu, H.-M. Cheng, H.-M. Cheng, J. Liang, S. X. Dou, Carbon 2019, 144, 798.
- 10G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443.
- 11P. Bocchetta, M. Amati, B. Bozzini, M. Catalano, A. Gianoncelli, L. Gregoratti, A. Taurino, M. Kiskinova, ACS Appl. Mater. Interfaces 2014, 6, 19621.
- 12S. Brocato, A. Serov, P. Atanassov, Electrochim. Acta 2013, 87, 361.
- 13M. Wu, Q. Tang, F. Dong, Y. Wang, D. Li, Q. Guo, Y. Liu, J. Qiao, Phys. Chem. Chem. Phys. 2016, 18, 18665.
- 14a) W. Li, A. Yu, D. C. Higgins, B. G. Llanos, Z. Chen, J. Am. Chem. Soc. 2010, 132, 17056; b) C. Sun, Z. Li, J. Yang, S. Wang, X. Zhong, L. Wang, Catal. Today, DOI: 10.1016/j.cattod.2018.01.029; c) G. Xu, Z. Li, S. Wang, X. Yu, J. Power Sources 2010, 195, 4731; d) C. Sun, Z. Li, X. Zhong, S. Wang, X. Yin, L. Wang, J. Electrochem. Soc. 2018, 165, F24; e) Y. Ji, Z. Li, S. Wang, G. Xu, D. Li, X. Yu, J. Electrochem. Soc. 2011, 158, B139; f) W. J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. J. Zhang, J. Q. Wang, J. S. Hu, Z. Wei, L. J. Wan, J. Am. Chem. Soc. 2016, 138, 3570; g) R. Jasinski, Nature 1964, 201, 1212; h) I. Martinaiou, A. Shahraei, F. Grimm, H. Zhang, C. Wittich, S. Klemenz, S. J. Dolique, H.-J. Kleebe, R. W. Stark, U. I. Kramm, Electrochim. Acta 2017, 243, 183; i) P. Bocchetta, A. Gianoncelli, M. K. Abyaneh, M. Kiskinova, M. Amati, L. Gregoratti, D. Jezeršek, C. Mele, B. Bozzini, Electrochim. Acta 2014, 137, 535; j) M. Wu, E. Zhang, Q. Guo, Y. Wang, J. Qiao, K. Li, P. Pei, Appl. Energy 2016, 175, 468.
- 15Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390.
- 16P. E. Kasatkin, R. Jäger, E. Härk, P. Teppor, I. Tallo, U. Joost, K. Šmits, R. Kanarbik, E. Lust, Electrochem. Commun. 2017, 80, 33.
- 17W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L.-J. Wan, S. F. Alvi, L. Li, Angew. Chem., Int. Ed. 2013, 52, 11755.
- 18H. Ren, Y. Wang, Y. Yang, X. Tang, Y. Peng, H. Peng, L. Xiao, J. Lu, H. D. Abruña, L. Zhuang, ACS Catal. 2017, 7, 6485.
- 19T. Zhou, Y. Zhou, R. Ma, Z. Zhou, G. Liu, Q. Liu, Y. Zhu, J. Wang, Carbon 2017, 114, 177.
- 20P. H. Matter, E. Wang, M. Arias, E. J. Biddinger, U. S. Ozkan, J. Phys. Chem. B 2006, 110, 18374.
- 21J. Guo, Y. Cheng, Z. Xiang, ACS Sustainable Chem. Eng. 2017, 5, 7871.
- 22a) P. Yan, J. Liu, S. Yuan, Y. Liu, W. Cen, Y. Chen, Appl. Surf. Sci. 2018, 445, 398; b) S.-H. Liu, S.-C. Chen, Carbon 2016, 105, 282.
- 23Y. Zang, H. Zhang, X. Zhang, R. Liu, S. Liu, G. Wang, Y. Zhang, H. Zhao, Nano Res. 2016, 9, 2123.
- 24M.-Q. Wang, W.-H. Yang, H.-H. Wang, C. Chen, Z.-Y. Zhou, S.-G. Sun, ACS Catal. 2014, 4, 3928.
- 25Q. Wei, X. Yang, G. Zhang, D. Wang, L. Zuin, D. Banham, L. Yang, S. Ye, Y. Wang, M. Mohamedi, S. Sun, Appl. Catal., B 2018, 237, 85.
- 26C. Li, C. He, F. Sun, M. Wang, J. Wang, Y. Lin, ACS Appl. Nano Mater. 2018, 1, 1801.
- 27X. Lu, Z. Li, X. Yin, S. Wang, Y. Liu, Y. Wang, Int. J. Hydrogen Energy 2017, 42, 17504.
- 28L. Wang, Z. Tang, W. Yan, Q. Wang, H. Yang, S. Chen, J. Power Sources 2017, 343, 458.
- 29A. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess, J. Am. Chem. Soc. 2014, 136, 17530.
- 30a) K. Wang, Z. Tang, W. Wu, P. Xi, D. Liu, Z. Ding, X. Chen, X. Wu, S. Chen, Electrochim. Acta 2018, 284, 119; b) S. Patra, R. Choudhary, E. Roy, R. Madhuri, P. K. Sharma, Nano Energy 2016, 30, 118.