Assessment of Solar-to-Fuels Strategies: Photocatalysis and Electrocatalytic Reduction
Jeffrey A. Herron
Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, 53706 USA), Fax: (+1) 608-262-5494
Search for more papers by this authorCorresponding Author
Prof. Christos T. Maravelias
Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, 53706 USA), Fax: (+1) 608-262-5494
Search for more papers by this authorJeffrey A. Herron
Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, 53706 USA), Fax: (+1) 608-262-5494
Search for more papers by this authorCorresponding Author
Prof. Christos T. Maravelias
Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, 53706 USA), Fax: (+1) 608-262-5494
Search for more papers by this authorAbstract
The production of fuels in a solar refinery by the nonbiological conversion of CO2 and water is a potential sustainable solution to meet our future energy needs. We develop a general process model for a solar refinery that allows us to assess the energetic and economic feasibility of a specific process. We demonstrate the utility of this model by analyzing two specific cases: 1) the photocatalytic conversion and 2) the photovoltaic-powered electrocatalytic reduction of CO2 to yield a methanol product. From the analysis, we posit specific catalytic, reaction engineering, process engineering, and solar utilities targets to compete with industrial methanol production. For the photocatalytic process, the most important challenge is to improve the solar-to-fuels efficiency to at least 15 %, whereas for the electrocatalytic reduction process, even with much improved current density, cell potential, and reaction selectivity, the process will be ultimately limited by the price of solar (or other renewable) electricity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ente201600163-sup-0001-misc_information.pdf365.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Chu, A. Majumdar, Nature 2012, 488, 294–303;
- 1bR. Schlögl, Angew. Chem. Int. Ed. 2015, 54, 4436–4439; Angew. Chem. 2015, 127, 4512–4516.
- 2
- 2aN. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735;
- 2bN. S. Lewis, G. Crabtree, Department of Energy, 2005;
- 2cA. Sternberg, A. Bardow, Energy Environ. Sci. 2015, 8, 389–400.
- 3R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805–809.
- 4
- 4aC. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 2010, 22, E 28
- 4bB. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928–935;
- 4cJ. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, A. M. Prats, J. I. Leon, N. Moreno-Alfonso, IEEE Trans. Ind. Electron. 2006, 53, 1002–1016;
- 4dZ. G. Yang, J. L. Zhang, M. C. W. Kintner-Meyer, X. C. Lu, D. W. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577–3613.
- 5
- 5aG. Centi, G. Iaquaniello, S. Perathoner, ChemSusChem 2011, 4, 1265–1273;
- 5bN. von der Assen, P. Voll, M. Peters, A. Bardow, Chem. Soc. Rev. 2014, 43, 7982–7994;
- 5cN. von der Assen, J. Jung, A. Bardow, Energy Environ. Sci. 2013, 6, 2721–2734;
- 5dN. von der Assen, A. Bardow, Green Chem. 2014, 16, 3272–3280;
- 5eG. A. Ozin, Adv. Mater. 2015, 27, 1957–1963;
- 5fE. B. Stechel, J. E. Miller, J. CO2 Util. 2013, 1, 28–36.
- 6
- 6aT. M. Mata, A. A. Martins, N. S. Caetano, Renewable Sustainable Energy Rev. 2010, 14, 217–232;
- 6bY. Chisti, Biotechnol. Adv. 2007, 25, 294–306;
- 6cM. K. Lam, K. T. Lee, Biotechnol. Adv. 2012, 30, 673–690.
- 7
- 7aV. Menon, M. Rao, Prog. Energy Combust. Sci. 2012, 38, 522–550;
- 7bA. V. Bridgwater, Biomass Bioenergy 2012, 38, 68–94;
- 7cJ. N. Chheda, G. W. Huber, J. A. Dumesic, Angew. Chem. Int. Ed. 2007, 46, 7164–7183; Angew. Chem. 2007, 119, 7298–7318.
- 8
- 8aA. Bassani, F. Manenti, E. Ranzi, N. N. M. Lima, L. Z. Linan, Chem. Eng. Trans. 2015, 43, 1483–1488;
- 8bM. Bevilacqua, J. Filippi, H. A. Miller, F. Vizza, Energy Technol. 2015, 3, 197–210;
- 8cW. Davis, M. Martin, J. Cleaner Prod. 2014, 80, 252–261;
- 8dP. Kongpanna, D. K. Babi, V. Pavarajarn, S. Assabumrungrat, R. Gani, Comput. Chem. Eng. 2016, 87, 125–144;
- 8eP. Kongpanna, V. Pavarajarn, R. Gani, S. Assabumrungrat, Chem. Eng. Res. Des. 2015, 93, 496–510;
- 8fF. Manenti, Comput. Aided Chem. Eng. 2015, 37, 1049–1054;
- 8gM. Martín, J. CO2 Util. 2016, 13, 105–113;
- 8hM. Martín, W. Davis, Comput. Chem. Eng. 2016, 84, 313–325;
- 8iK. Roh, J. H. Lee, R. Gani, Int. J. Greenhouse Gas Control 2016, 47, 250–265.
- 9
- 9aJ. Newman, P. G. Hoertz, C. A. Bonino, J. A. Trainham, J. Electrochem. Soc. 2012, 159, A 1722–A1729;
- 9bG. Centi, S. Perathoner, Catal. Today 2009, 148, 191–205;
- 9cO. S. Joo, K. D. Jung, I. Moon, A. Y. Rozovskii, G. I. Lin, S. H. Han, S. J. Uhm, Ind. Eng. Chem. Res. 1999, 38, 1808–1812;
- 9dC. Graves, S. D. Ebbesen, M. Mogensen, K. S. Lackner, Renewable Sustainable Energy Rev. 2011, 15, 1–23.
- 10
- 10aJ. Kim, C. A. Henao, T. A. Johnson, D. E. Dedrick, J. E. Miller, E. B. Stechel, C. T. Maravelias, Energy Environ. Sci. 2011, 4, 3122–3132;
- 10bJ. Kim, T. A. Johnson, J. E. Miller, E. B. Stechel, C. T. Maravelias, Energy Environ. Sci. 2012, 5, 8417–8429;
- 10cD. Mignard, M. Sahibzada, J. M. Duthie, H. W. Whittington, Int. J. Hydrogen Energy 2003, 28, 455–464.
- 11A. Corma, H. Garcia, J. Catal. 2013, 308, 168–175.
- 12
- 12aR. Abe, K. Sayama, H. Sugihara, J. Phys. Chem. B 2005, 109, 16052–16061;
- 12bT. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520–7535.
- 13
- 13aM. Carmo, D. L. Fritz, J. Merge, D. Stolten, Int. J. Hydrogen Energy 2013, 38, 4901–4934;
- 13bS. K. Ritter, Chem. Eng. News 2015, 93, 37–38;
- 13cD. T. Whipple, P. J. A. Kenis, J. Phys. Chem. Lett. 2010, 1, 3451–3458.
- 14
- 14aT. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, H. M. Upadhyaya, Sol. Energy 2011, 85, 1580–1608;
- 14bG. K. Singh, Energy 2013, 53, 1–13.
- 15H. L. Zhang, J. Baeyens, J. Degreve, G. Caceres, Renewable Sustainable Energy Rev. 2013, 22, 466–481.
- 16
- 16aR. van de Krol, M. Grätzel, Photoelectrochemical Hydrogen Production, Springer, New York, 2012;
- 16bM. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446–6473;
- 16cJ. Moir, N. Soheilnia, K. Liao, P. O'Brien, Y. Tian, K. S. Burch, G. A. Ozin, ChemSusChem 2015, 8, 1557–1567.
- 17
- 17aC. Perkins, A. W. Weimer, Int. J. Hydrogen Energy 2004, 29, 1587–1599;
- 17bC. Perkins, A. W. Weimer, AIChE J. 2009, 55, 286–293;
- 17cA. Steinfeld, Sol. Energy 2005, 78, 603–615;
- 17dM. Romero, A. Steinfeld, Energy Environ. Sci. 2012, 5, 9234–9245;
- 17eJ. R. Scheffe, A. Steinfeld, Mater. Today 2014, 17, 341–348;
- 17fD. Marxer, P. Furler, J. Scheffe, H. Geerlings, C. Falter, V. Batteiger, A. Sizmann, A. Steinfeld, Energy Fuels 2015, 29, 3241–3250;
- 17gJ. Kim, J. E. Miller, C. T. Maravelias, E. B. Stechel, Appl. Energy 2013, 111, 1089–1098;
- 17hJ. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, J. N. Stuecker, J. Mater. Sci. 2008, 43, 4714–4728.
- 18
- 18aG. Centi, E. A. Quadrelli, S. Perathoner, Energy Environ. Sci. 2013, 6, 1711–1731;
- 18bE. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, J. Perez-Ramirez, Energy Environ. Sci. 2013, 6, 3112–3135;
- 18cS. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, ACS Nano 2010, 4, 1259–1278.
- 19J. A. Herron, J. Kim, A. A. Upadhye, G. W. Huber, C. T. Maravelias, Energy Environ. Sci. 2015, 8, 126–157.
- 20A. Kudo, Int. J. Hydrogen Energy 2006, 31, 197–202.
- 21
- 21aP. J. Guo, P. J. van Eyk, W. L. Saw, P. J. Ashman, G. J. Nathan, E. B. Stechel, Energy Fuels 2015, 29, 2738–2751;
- 21bK. C. Y. Kueh, G. J. Nathan, W. L. Saw, Sol. Energy 2015, 118, 209–221.
- 22U.S. Energy Information Administration, Electric Scales, Revenue and Average Price, 2013, http://www.eia.gov/electricity/sales_revenue_price, accessed 19 May 2016.
- 23U.S. Energy Information Administration, Washington DC, Annual Energy Outlook 2013, 2013, http://www.eia.gov/forecasts/aeo.
- 24R. Silva, M. Berenguel, M. Perez, A. Fernandez-Garcia, Appl. Energy 2014, 113, 603–614.
- 25
- 25aA. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, L. F. Cabeza, Renewable Sustainable Energy Rev. 2010, 14, 31–55;
- 25bR. Sioshansi, P. Denholm, IEEE Trans. Sustainable Energy 2010, 1, 173–183.
- 26
- 26aH. de Lasa, B. Serrano, M. Salaices, Photocatalytic reaction engineering, Springer Science+Business Media, New York, 2005;
10.1007/0-387-27591-6 Google Scholar
- 26bR. J. Braham, A. T. Harris, Ind. Eng. Chem. Res. 2009, 48, 8890–8905;
- 26cS. Das, W. M. A. W. Daud, Renewable Sustainable Energy Rev. 2014, 39, 765–805;
- 26dK. F. Li, X. Q. An, K. H. Park, M. Khraisheh, J. W. Tang, Catal. Today 2014, 224, 3–12;
- 26eI. Rossetti, A. Villa, C. Pirola, L. Prati, G. Ramis, RSC Adv. 2014, 4, 28883–28885;
- 26fB. Serrano, A. Ortiz, J. Moreira, H. I. de Lasa, Ind. Eng. Chem. Res. 2010, 49, 6824–6833;
- 26gZ. Xing, X. Zong, J. Pan, L. Z. Wang, Chem. Eng. Sci. 2013, 104, 125–146.
- 27B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. B. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. L. Wang, E. Miller, T. F. Jaramillo, Energy Environ. Sci. 2013, 6, 1983–2002.
- 28
- 28aT. E. Doll, F. H. Frimmel, Water Res. 2005, 39, 847–854;
- 28bC. F. Liriano-Jorge, U. Sohmen, A. Ozkan, H. Gulyas, R. Otterpohl, Adv. Mater. Sci. Eng. 2014, 2014, 1–12;
- 28cS. A. Lee, K. H. Choo, C. H. Lee, H. I. Lee, T. Hyeon, W. Choi, H. H. Kwon, Ind. Eng. Chem. Res. 2001, 40, 1712–1719;
- 28dK. Guerra, J. Pellegrino, Investigation of low-pressure membrane performance, cleaning, and economics using a techno-economic modeling approach, U.S. Department of the Interior, Denver, CO, 2012.
- 29
- 29aG. J. Kolb, K. H. Ho, T. R. Mancini, J. A. Gary, Power Tower Technology Roadmap and Cost Reduction Plan, Sandia National Laboratories, Albuquerque, NM, 2011;
- 29bG. J. Kolb, S. A. Jones, M. W. Donnelly, D. Gorman, R. Thomas, R. Davenport, R. Lumia, Heliostat Cost Reduction Study, Sandia National Laboratories, Albuquerque, NM, 2007.
- 30
- 30aUOP LLC, 2009;
- 30bB. Burr, L. Lyddon, Bryan Research & Engineering, Inc.
- 31
- 31aA. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, Energy Environ. Sci. 2012, 5, 9217–9233;
- 31bM. Tahir, N. S. Amin, Renewable Sustainable Energy Rev. 2013, 25, 560–579;
- 31cS. Das, W. M. A. W. Daud, RSC Adv. 2014, 4, 20856–20893;
- 31dS. Neatu, J. A. Macia-Agulló, H. Garcia, Int. J. Mol. Sci. 2014, 15, 5246–5262.
- 32G. Saur, Wind-to-hydrogen project: Electrolyzer capital cost study, National Renewable Energy Laboratory, Golden, CO, 2008.
- 33
- 33aJ. Albo, M. Alvarez-Guerra, P. Castano, A. Irabien, Green Chem. 2015, 17, 2304–2324;
- 33bI. Ganesh, Renewable Sustainable Energy Rev. 2014, 31, 221–257.
- 34K. W. Frese, J. Electrochem. Soc. 1991, 138, 3338–3344.
- 35J. P. Qu, X. G. Zhang, Y. G. Wang, C. X. Xie, Electrochim. Acta 2005, 50, 3576–3580.
- 36
- 36aP. G. O'Brien, A. Sandhel, T. E. Wood, A. A. Jelle, L. B. Hoch, D. D. Perovic, C. A. Mims, G. A. Ozin, Adv. Sci. 2014, 1, 1400001;
- 36bL. B. Hoch, T. E. Wood, P. G. O'Brien, K. Liao, L. M. Reyes, C. A. Mims, G. A. Ozin, Adv. Sci. 2014, 1, 1400013;
- 36cM. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, D. D. Dionysiou, Appl. Catal. B 2012, 125, 331–349.
- 37
- 37aF. Bella, C. Gerbaldi, C. Barolo, M. Gratzel, Chem. Soc. Rev. 2015, 44, 3431–3473;
- 37bG. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153–161;
- 37cM. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovoltaics 2015, 23, 1–9.