Potassium-Based α-Manganese Dioxide Nanofiber Binder-Free Self-Supporting Electrodes: A Design Strategy for High Energy Density Batteries
Dr. Altug S. Poyraz
Brookhaven National Laboratory, Upton, NY, 11973 USA
Search for more papers by this authorJianping Huang
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorDr. Lijun Wu
Brookhaven National Laboratory, Upton, NY, 11973 USA
Search for more papers by this authorDr. David C. Bock
Brookhaven National Laboratory, Upton, NY, 11973 USA
Search for more papers by this authorProf. Yimei Zhu
Brookhaven National Laboratory, Upton, NY, 11973 USA
Search for more papers by this authorCorresponding Author
Prof. Amy C. Marschilok
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794 USA
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorCorresponding Author
Prof. Kenneth J. Takeuchi
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794 USA
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorCorresponding Author
Prof. Esther S. Takeuchi
Brookhaven National Laboratory, Upton, NY, 11973 USA
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794 USA
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorDr. Altug S. Poyraz
Brookhaven National Laboratory, Upton, NY, 11973 USA
Search for more papers by this authorJianping Huang
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorDr. Lijun Wu
Brookhaven National Laboratory, Upton, NY, 11973 USA
Search for more papers by this authorDr. David C. Bock
Brookhaven National Laboratory, Upton, NY, 11973 USA
Search for more papers by this authorProf. Yimei Zhu
Brookhaven National Laboratory, Upton, NY, 11973 USA
Search for more papers by this authorCorresponding Author
Prof. Amy C. Marschilok
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794 USA
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorCorresponding Author
Prof. Kenneth J. Takeuchi
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794 USA
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorCorresponding Author
Prof. Esther S. Takeuchi
Brookhaven National Laboratory, Upton, NY, 11973 USA
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794 USA
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorAbstract
This work minimizes the passive components of electrodes and moves toward bridging the gap between actual and theoretical battery gravimetric energy density. Binder-free self-supporting (BFSS) cathodes were prepared from redox-active, high aspect ratio, potassium α-MnO2 nanofibers (K-OMS-2) by eliminating the binder and current collector. The electroactive and structural element, K-OMS-2, was prepared by using a scalable, moderate temperature, aqueous synthesis. The BFFS electrode approach allows fabrication of thick, high energy density electrodes with low impedance, with up to 10-fold improvement in delivered specific energy relative to conventional cathodes. This could enable the design of high-capacity large form factor cells, as required for applications demanding high energy content. In principle, this approach suggests a widely applicable paradigm for the construction of other BFFS electrodes through the targeted synthesis of other transition-metal oxides with high aspect, fibrous morphologies.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ente201600128-sup-0001-misc_information.pdf816.7 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. C. Bock, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, Electrochim. Acta 2012, 84, 155–164.
- 2J. Chen, F. Cheng, Acc. Chem. Res. 2009, 42, 713–723.
- 3M. R. Palacín, Chem. Soc. Rev. 2009, 38, 2565–2575.
- 4C.-X. Zu, H. Li, Energy Environ. Sci. 2011, 4, 2614.
- 5X. Zhu, P. Zhang, S. Xu, X. Yan, Q. Xue, ACS Appl. Mater. Interfaces 2014, 6, 11665–11674.
- 6D. Linden, T. B. Reddy, Handbook of Batteries, 3rd ed., McGraw-Hill, New York, 2002.
- 7J. W. Hu, Z. P. Wu, S. W. Zhong, W. B. Zhang, S. Suresh, A. Mehta, N. Koratkar, Carbon 2015, 87, 292–298.
- 8C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen, Y. Huang, J. Li, Nano Lett. 2015, 15, 1796–1802.
- 9Y. Sun, S.-B. Yang, L.-P. Lv, I. Lieberwirth, L.-C. Zhang, C.-X. Ding, C.-H. Chen, J. Power Sources 2013, 241, 168–172.
- 10C. Zhang, Y. Liang, L. Yao, Y. Qiu, J. Alloys Compd. 2015, 627, 91–100.
- 11H. Wang, Y. Bai, S. Chen, X. Luo, C. Wu, F. Wu, J. Lu, K. Amine, ACS Appl. Mater. Interfaces 2015, 7, 80–84.
- 12H. Zhang, X. Liu, R. Wang, R. Mi, S. Li, Y. Cui, Y. Deng, J. Mei, H. Liu, J. Power Sources 2015, 274, 1063–1069.
- 13S. Cao, X. Feng, Y. Song, X. Xue, H. Liu, M. Miao, J. Fang, L. Shi, ACS Appl. Mater. Interfaces 2015, 7, 10695–10701.
- 14Q. Zhang, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, Phys. Chem. Chem. Phys. 2015, 17, 22504–22518.
- 15B. S. Lalia, T. Shah, R. Hashaikeh, J. Power Sources 2015, 278, 314–319.
- 16L. Noerochim, J.-Z. Wang, D. Wexler, Z. Chao, H.-K. Liu, J. Power Sources 2013, 228, 198–205.
- 17Y. S. Yun, J. M. Kim, H. H. Park, J. Lee, Y. S. Huh, H.-J. Jin, J. Power Sources 2013, 244, 747–751.
- 18R. Wang, C. Xu, J. Sun, L. Gao, C. Lin, J. Mater. Chem. A 2013, 1, 1794–1800.
- 19S. Shilpa, B. M. Basavaraja, S. B. Majumder, A. Sharma, J. Mater. Chem. A 2015, 3, 5344–5351.
- 20Q. T. Zhang, Z. L. Yu, P. Du, C. Su, Recent Pat. Nanotechnol. 2010, 4, 100–110.
- 21K. Sheem, Y. H. Lee, H. S. Lim, J. Power Sources 2006, 158, 1425–1430.
- 22A. C. Marschilok, S. H. Lee, C. C. Milleville, P. Chen, E. S. Takeuchi, K. J. Takeuchi, J. Compos. Mater. 2013, 47, 33–40.
- 23R. A. DiLeo, Q. Zhang, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, ECS Electrochem. Lett. 2015, 4, A 10–A14.
- 24A. C. Marschilok, C. P. Schaffer, K. J. Takeuchi, E. S. Takeuchi, J. Compos. Mater. 2013, 47, 41–49.
- 25A. Marschilok, C.-Y. Lee, A. Subramanian, K. J. Takeuchi, E. S. Takeuchi, Energy Environ. Sci. 2011, 4, 2943.
- 26S. L. Suib, J. Mater. Chem. 2008, 18, 1623–1631.
- 27S. L. Suib, Acc. Chem. Res. 2008, 41, 479–487.
- 28T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvåg, P. Norby, J. Phys. Chem. C 2008, 112, 13134–13140.
- 29J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J. B. Li, Z. M. Du, Z. X. Shen, J. Phys. Chem. C 2008, 112, 12594–12598.
- 30J. Yuan, K. Laubernds, J. Villegas, S. Gomez, S. L. Suib, Adv. Mater. 2004, 16, 1729–1732.
- 31J. Yuan, W.-N. Li, S. Gomez, S. L. Suib, J. Am. Chem. Soc. 2005, 127, 14184–14185.
- 32M. Polverejan, J. C. Villegas, S. L. Suib, J. Am. Chem. Soc. 2004, 126, 7774–7775.
- 33S. Cheng, L. Yang, D. Chen, X. Ji, Z.-j. Jiang, D. Ding, M. Liu, Nano Energy 2014, 9, 161–167.
- 34T. Gao, H. Fjellvag, P. Norby, Anal. Chim. Acta 2009, 648, 235–239.
- 35G. Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford, S. L. Suib, Chem. Mater. 2011, 23, 3892–3901.
- 36H. M. Galindo, Y. Carvajal, E. Njagi, R. A. Ristau, S. L. Suib, Langmuir 2010, 26, 13677–13683.
- 37S. Dharmarathna, C. K. King′ondu, W. Pedrick, L. Pahalagedara, S. L. Suib, Chem. Mater. 2012, 24, 705–712.
- 38J. Li, R. Wang, J. Hao, J. Phys. Chem. C 2010, 114, 10544–10550.
- 39H. C. Genuino, S. Dharmarathna, E. C. Njagi, M. C. Mei, S. L. Suib, J. Phys. Chem. C 2012, 116, 12066–12078.
- 40W. Yan, T. Ayvazian, J. Kim, Y. Liu, K. C. Donavan, W. Xing, Y. Yang, J. C. Hemminger, R. M. Penner, ACS Nano 2011, 5, 8275–8287.
- 41M. Chigane, M. Ishikawa, J. Electrochem. Soc. 2000, 147, 2246–2251.
- 42V. P. Santos, O. S. G. P. Soares, J. J. W. Bakker, M. F. R. Pereira, J. J. M. Órfão, J. Gascon, F. Kapteijn, J. L. Figueiredo, J. Catal. 2012, 293, 165–174.
- 43M. Toupin, T. Brousse, D. Belanger, Chem. Mater. 2004, 16, 3184–3190.
- 44T. Chen, H. Dou, X. Li, X. Tang, J. Li, J. Hao, Microporous Mesoporous Mater. 2009, 122, 270–274.
- 45M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 2002, 14, 3946–3952.
- 46V. R. Galakhov, M. Demeter, S. Bartkowski, M. Neumann, N. A. Ovechkina, E. Z. Kurmaev, N. I. Lobachevskaya, Y. M. Mukovskii, J. Mitchell, D. L. Ederer, Phys. Rev. B 2002, 65, 113102.
- 47S. S. T. Bastos, J. J. M. Órfão, M. M. A. Freitas, M. F. R. Pereira, J. L. Figueiredo, Appl. Catal. B 2009, 93, 30–37.
- 48P. Ragupathy, D. H. Park, G. Campet, H. N. Vasan, S.-J. Hwang, J.-H. Choy, N. Munichandraiah, J. Phys. Chem. C 2009, 113, 6303–6309.
- 49M. Sun, L. Yu, F. Ye, G. Diao, Q. Yu, Y. Zheng, J.-Y. Piquemal, Mater. Lett. 2011, 65, 3184–3186.
- 50K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, M. Korobov, J. Phys. Chem. B 2000, 104, 8911–8915.
- 51F. J. Schmied, C. Teichert, L. Kappel, U. Hirn, W. Bauer, R. Schennach, Sci. Rep. 2013, 3, 2432.
- 52Z. Burghard, A. Leineweber, P. A. van Aken, T. Dufaux, M. Burghard, J. Bill, Adv. Mater. 2013, 25, 2468–2473.
- 53Y. Long, J. F. Hui, P. P. Wang, S. Hu, B. Xu, G. L. Xiang, J. Zhuang, X. Q. Lu, X. Wang, Chem. Commun. 2012, 48, 5925–5927.
- 54B. Lan, M. Sun, T. Lin, G. Cheng, L. Yu, S. Peng, J. Xu, Mater. Lett. 2014, 121, 234–237.
- 55S. M. Jung, H. Y. Jung, W. Fang, M. S. Dresselhaus, J. Kong, Nano Lett. 2014, 14, 1810–1817.
- 56J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong, F. Stellacci, Nat. Nanotechnol. 2008, 3, 332–336.
- 57A. M. Hashem, A. M. Abdel-Latif, H. M. Abuzeid, H. M. Abbas, H. Ehrenberg, R. S. Farag, A. Mauger, C. M. Julien, J. Alloys Compd. 2011, 509, 9669–9674.
- 58H. M. Abuzeid, A. M. Hashem, N. Narayanan, H. Ehrenberg, C. M. Julien, Solid State Ionics 2011, 182, 108–115.
- 59C. S. Johnson, J. Power Sources 2007, 165, 559–565.
- 60N. Kijima, H. Yasuda, T. Sato, Y. Yoshimura, J. Solid State Chem. 2001, 159, 94–102.
- 61C. S. Johnson, D. W. Dees, M. F. Mansuetto, M. M. Thackeray, D. R. Vissers, D. Argyriou, C. K. Loong, L. Christensen, J. Power Sources 1997, 68, 570–577.
- 62H. Zheng, C. Feng, S.-J. Kim, S. Yin, H. Wu, S. Wang, S. Li, Electrochim. Acta 2013, 88, 225–230.
- 63N. Kijima, Y. Takahashi, J. Akimoto, J. Awaka, J. Solid State Chem. 2005, 178, 2741–2750.
- 64C. Zhang, C. Feng, P. Zhang, Z. Guo, Z. Chen, S. Li, H. Liu, RSC Adv. 2012, 2, 1643–1649.
- 65Y. Wang, G. Cao, Adv. Mater. 2008, 20, 2251–2269.
- 66M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 2010, 195, 7904–7929.
- 67M. Yoshio, H. Nakamura, Y. Xia, Electrochim. Acta 1999, 45, 273–283.
- 68X. H. Rui, N. Ding, J. Liu, C. Li, C. H. Chen, Electrochim. Acta 2010, 55, 2384–2390.
- 69K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Electrochim. Acta 2003, 48, 2691–2703.
- 70N. Kumagai, T. Sasaki, S. Oshitari, S. Komaba, J. New Mater. Electrochem. Syst. 2006, 9, 175–180.
- 71C.-H. Chen, S. L. Suib, J. Chin. Chem. Soc. 2012, 59, 465–472.
- 72L. Wu, F. Xu, Y. Zhu, A. B. Brady, J. Huang, J. L. Durham, E. Dooryhee, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, ACS Nano 2015, 9, 8430–8439.
- 73Y. Yuan, A. Nie, G. M. Odegard, R. Xu, D. Zhou, S. Santhanagopalan, K. He, H. Asayesh-Ardakani, D. D. Meng, R. F. Klie, C. Johnson, J. Lu, R. Shahbazian-Yassar, Nano Lett. 2015, 15, 2998–3007.
- 74D. A. Tompsett, M. S. Islam, Chem. Mater. 2013, 25, 2515–2526.
- 75H. B. Tan, S. P. Wang, J. Electrochem. Soc. 2014, 161, A 1927–A1932.