Volume 15, Issue 5 e70241
LETTER TO THE JOURNAL
Open Access

Machine-learning analysis identifies “elite” viral controllers with increased survival and homeostatic responses in critical COVID-19

Nadia García-Mateo

Nadia García-Mateo

Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Search for more papers by this author
Alejandro Álvaro-Meca

Alejandro Álvaro-Meca

Department of Preventive Medicine and Public Health, Faculty of Health Science, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain

Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain

Search for more papers by this author
Tamara Postigo

Tamara Postigo

Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain

Search for more papers by this author
Alicia Ortega

Alicia Ortega

Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Search for more papers by this author
Amanda de la de la Fuente

Amanda de la de la Fuente

Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Search for more papers by this author
Raquel Almansa

Raquel Almansa

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Department of Cellular Biology, Histology and Pharmacology, University of Valladolid, Valladolid, Spain

Search for more papers by this author
Noelia Jorge

Noelia Jorge

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Search for more papers by this author
Laura González-González

Laura González-González

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Search for more papers by this author
Lara Sánchez Recio

Lara Sánchez Recio

Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain

Search for more papers by this author
Isidoro Martínez

Isidoro Martínez

Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain

Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain

Search for more papers by this author
María Martín-Vicente

María Martín-Vicente

Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain

Search for more papers by this author
María José Muñoz-Gómez

María José Muñoz-Gómez

Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain

Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain

Search for more papers by this author
Vicente Más

Vicente Más

Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain

Search for more papers by this author
Mónica Vázquez

Mónica Vázquez

Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain

Search for more papers by this author
Olga Cano

Olga Cano

Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain

Search for more papers by this author
Daniel Vélez-Serrano

Daniel Vélez-Serrano

Department of Statistics and Operations Research, Universidad Complutense de Madrid, Plaza de Ciencias, Madrid, Spain

Search for more papers by this author
Luis Tamayo

Luis Tamayo

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Critical Care Medicine Service, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
José Ángel Berezo

José Ángel Berezo

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Critical Care Medicine Service, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Rubén Herrán-Monge

Rubén Herrán-Monge

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Critical Care Medicine Service, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Jesús Blanco

Jesús Blanco

Critical Care Medicine Service, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Pedro Enríquez

Pedro Enríquez

Critical Care Medicine Service, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Pablo Ryan-Murua

Pablo Ryan-Murua

Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain

Internal Medicine Service, Hospital Infanta Leonor, Madrid, Spain

Search for more papers by this author
Amalia de la Martínez de la Gándara

Amalia de la Martínez de la Gándara

Critical Care Medicine Service, Hospital Infanta Leonor, Avenida de la Gran Vía del Este, Madrid, Spain

Search for more papers by this author
Covadonga Rodríguez

Covadonga Rodríguez

Critical Care Medicine Service, Hospital Infanta Leonor, Avenida de la Gran Vía del Este, Madrid, Spain

Search for more papers by this author
Gloria Andrade

Gloria Andrade

Critical Care Medicine Service, Hospital Infanta Leonor, Avenida de la Gran Vía del Este, Madrid, Spain

Search for more papers by this author
Elena Bustamante-Munguira

Elena Bustamante-Munguira

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Critical Care Medicine Service, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Gloria Renedo Sánchez-Girón

Gloria Renedo Sánchez-Girón

Critical Care Medicine Service, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Ramón Cicuendez Ávila

Ramón Cicuendez Ávila

Critical Care Medicine Service, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Juan Bustamante-Munguira

Juan Bustamante-Munguira

Cardiovascular Surgery Service, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Wysali Trapiello

Wysali Trapiello

Clinical Analysis Service, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Elena Gallego Curto

Elena Gallego Curto

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Critical Care Medicine Service, Hospital San Pedro de Alcántara, Cáceres, Spain

Search for more papers by this author
Alejandro Úbeda-Iglesias

Alejandro Úbeda-Iglesias

Critical Care Medicine Service, Hospital Punta de Europa, Algeciras, Spain

Search for more papers by this author
María Salgado-Villén

María Salgado-Villén

Critical Care Medicine Service, Hospital Punta de Europa, Algeciras, Spain

Search for more papers by this author
Enrique Berruguilla-Pérez

Enrique Berruguilla-Pérez

Unidad de Gestión Clínica de Análisis Clínicos, Hospital Punta de Europa, Algeciras, Spain

Search for more papers by this author
María del Carmen del de la Torre

María del Carmen del de la Torre

Department of Intensive Care Medicine, Hospital de Mataró, Mataró, Barcelona, Spain

Search for more papers by this author
Estel Güell

Estel Güell

Department of Intensive Care Medicine, Hospital de Mataró, Mataró, Barcelona, Spain

Search for more papers by this author
Fernando Casadiego

Fernando Casadiego

Department of Intensive Care Medicine, Hospital de Mataró, Mataró, Barcelona, Spain

Search for more papers by this author
Ángel Estella

Ángel Estella

Intensive Care Unit, Hospital Universitario de Jerez, Departamento de Medicina, Universidad de Cádiz, INiBICA, Jerez de la Frontera, Spain

Search for more papers by this author
María Recuerda Núñez

María Recuerda Núñez

Intensive Care Unit, Hospital Universitario de Jerez, Departamento de Medicina, Universidad de Cádiz, INiBICA, Jerez de la Frontera, Spain

Search for more papers by this author
Juan Manuel Sánchez Calvo

Juan Manuel Sánchez Calvo

Microbiology Department, Hospital Universitario de Jerez, Jerez de la Frontera, Spain

Search for more papers by this author
Sandra Campos-Fernández

Sandra Campos-Fernández

Critical Care Medicine Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain

Search for more papers by this author
Yhivian Peñasco-Martín

Yhivian Peñasco-Martín

Critical Care Medicine Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain

Search for more papers by this author
María Teresa García Unzueta

María Teresa García Unzueta

Servicio de Análisis Clínicos, Hospital Universitario Marqués de Valdecilla, Santander, Spain

Search for more papers by this author
Ignacio Martínez Varela

Ignacio Martínez Varela

Critical Care Department, Hospital Universitario Lucus Augustí, Lugo, Spain

Search for more papers by this author
María Teresa Bouza Vieiro

María Teresa Bouza Vieiro

Critical Care Department, Hospital Universitario Lucus Augustí, Lugo, Spain

Search for more papers by this author
Felipe Pérez-García

Felipe Pérez-García

Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain

Clinical Microbiology Service, Hospital Universitario Príncipe de Asturias, Madrid, Spain

Biomedicine and Biotechnology Department, Faculty of Medicine, Universidad de Alcalá, Madrid, Spain

Search for more papers by this author
Ana Moreno-Romero

Ana Moreno-Romero

Clinical Analysis Service, Hospital Universitario Príncipe de Asturias, Madrid, Spain

Search for more papers by this author
Lorenzo Socias

Lorenzo Socias

Intensive Care Unit, Hospital Universitario Son Llàtzer, Palma, Spain

Search for more papers by this author
Juan López Messa

Juan López Messa

Critical Care Medicine Service, Complejo Asistencial Universitario de Palencia, Palencia, Spain

Search for more papers by this author
Leire Pérez Bastida

Leire Pérez Bastida

Critical Care Medicine Service, Complejo Asistencial Universitario de Palencia, Palencia, Spain

Search for more papers by this author
Pablo Vidal-Cortés

Pablo Vidal-Cortés

Intensive Care Unit, Complejo Hospitalario Universitario de Ourense, Ourense, Spain

Search for more papers by this author
Lorena del del Río-Carbajo

Lorena del del Río-Carbajo

Intensive Care Unit, Complejo Hospitalario Universitario de Ourense, Ourense, Spain

Search for more papers by this author
Jorge del Nieto del Olmo

Jorge del Nieto del Olmo

Intensive Care Unit, Complejo Hospitalario Universitario de Ourense, Ourense, Spain

Search for more papers by this author
Estefanía Prol-Silva

Estefanía Prol-Silva

Intensive Care Unit, Complejo Hospitalario Universitario de Ourense, Ourense, Spain

Search for more papers by this author
Víctor Sagredo Meneses

Víctor Sagredo Meneses

Critical Care Medicine Service, Complejo Universitario Asistencial de Salamanca, Salamanca, Spain

Search for more papers by this author
Noelia Albalá Martínez

Noelia Albalá Martínez

Critical Care Medicine Service, Complejo Universitario Asistencial de Salamanca, Salamanca, Spain

Search for more papers by this author
Milagros González-Rivera

Milagros González-Rivera

Clinical Biochemistry Service, Hospital General Universitario Gregorio Marañón, Madrid, Spain

Search for more papers by this author
José Manuel Gómez

José Manuel Gómez

Critical Care Medicine Service, Hospital General Universitario Gregorio Marañón, Madrid, Spain

Search for more papers by this author
Nieves Carbonell

Nieves Carbonell

Intensive Care Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain

Search for more papers by this author
María Luisa Blasco

María Luisa Blasco

Intensive Care Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain

Search for more papers by this author
David de de Gonzalo-Calvo

David de de Gonzalo-Calvo

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Institut de Recerca Biomèdica de Lleida, Lleida, Spain

Search for more papers by this author
Jessica González

Jessica González

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Institut de Recerca Biomèdica de Lleida, Lleida, Spain

Search for more papers by this author
Jesús Caballero

Jesús Caballero

Critical Care Medicine Service, Hospital Universitari Arnau de Vilanova, Lleida, Spain

Search for more papers by this author
Carme Barberá

Carme Barberá

Critical Care Medicine Service, Hospital Universitari de Santa Maria, Lleida, Spain

Search for more papers by this author
María Cruz Martín Delgado

María Cruz Martín Delgado

Intensive Care Unit, Hospital Universitario de Torrejón, Universidad Francisco de Vitoria, Torrejón de Ardoz, Madrid, Spain

Search for more papers by this author
Luis Jorge Valdivia

Luis Jorge Valdivia

Critical Care Medicine Service, Hospital Universitario de León, León, Spain

Search for more papers by this author
Caridad Martín-López

Caridad Martín-López

Critical Care Medicine Service, Hospital General de Segovia, Segovia, Spain

Search for more papers by this author
María Teresa Nieto

María Teresa Nieto

Critical Care Medicine Service, Hospital General de Segovia, Segovia, Spain

Search for more papers by this author
Ruth Noemí Jorge García

Ruth Noemí Jorge García

Intensive Care Department, Hospital Nuestra Señora de Gracia, Zaragoza, Spain

Search for more papers by this author
Emilio Maseda

Emilio Maseda

Anesthesiology and Reanimation Service, Hospital Universitario de la Paz, Madrid, Spain

Search for more papers by this author
Ana Loza-Vázquez

Ana Loza-Vázquez

Critical Care Medicine Service, Hospital Universitario Nuestra Señora de Valme, Sevilla, Spain

Search for more papers by this author
José María Eiros

José María Eiros

Microbiology Service, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain

Search for more papers by this author
Anna Motos

Anna Motos

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Department of Pulmonology, Hospital Clinic de Barcelona, Institut D Investigacions August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain

Search for more papers by this author
Laia Fernández-Barat

Laia Fernández-Barat

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Department of Pulmonology, Hospital Clinic de Barcelona, Institut D Investigacions August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain

Search for more papers by this author
Joan Casenco-Ribas

Joan Casenco-Ribas

Department of Pulmonology, Hospital Clinic de Barcelona, Institut D Investigacions August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain

Search for more papers by this author
Adrián Ceccato

Adrián Ceccato

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Critical Care Center, Institut d'Investigació i Innovació Parc Taulí (I3PT), Hospital Universitari Sagrat Cor, Sabadell, Spain

Search for more papers by this author
Ferrán Barbé

Ferrán Barbé

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Institut de Recerca Biomèdica de Lleida, Lleida, Spain

Search for more papers by this author
David J. Kelvin

David J. Kelvin

Department of Microbiology and Immunology, Faculty of Medicine, Canadian Center for Vaccinology (CCfV), Dalhousie University, Halifax, NS, Canada

Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China

Search for more papers by this author
Jesús F. Bermejo-Martin

Corresponding Author

Jesús F. Bermejo-Martin

Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Department of Medicine, Faculty of Medicine, Universidad de Salamanca, Salamanca, Spain

Correspondence

Jesús F Bermejo-Martin, Department of Medicine, Faculty of Medicine, University of Salamanca, C. Alfonso X El Sabio, 37007 Salamanca, Spain.

Email: [email protected]

Search for more papers by this author
Ana P. Tedim

Ana P. Tedim

Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Search for more papers by this author
Salvador Resino

Salvador Resino

Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain

Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain

Search for more papers by this author
Antoni Torres

Antoni Torres

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

Department of Pulmonology, Hospital Clinic de Barcelona, Institut D Investigacions August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain

Search for more papers by this author
First published: 25 April 2025

Nadia García-Mateo, Alejandro Álvaro-Meca, Tamara Postigo, Alicia Ortega, Jesús F. Bermejo-Martin, Ana P Tedim, Salvador Resino, and Antoni Torres contributed equally to this work.

Dear Editor,

The outcome of COVID-19 disease is strongly related to the interaction between the virus and the host immune response, which may become dysregulated in critically ill patients. This dysregulated response is characterized by elevated levels of inflammatory mediators, an overactivation of the innate immune system,1 lymphopenia,2 delayed antibody and interferon responses,3 and a massive dissemination of viral components into the blood,4 all of which contribute to severity and increased mortality.5-7 These immune and non-immune parameters can be integrated into so-called combitypes8 to identify subgroups of patients with different immune profiles and outcomes, helping to guide clinical strategies. In a previous study we used viral RNA levels in plasma to categorize a multicentre cohort of critically ill COVID-19 patients into three subgroups with different mortality rate.4 In this study, we combined virological data (SARS-CoV-2 N1 RNA plasma load and N-antigenemia) and 32 host response biomarkers to improve classification of critically ill COVID-19 patients, with the objective to identify biological clues explaining survival.

We conducted a prospective cohort study in 785 critically ill COVID-19 patients with a plasma EDTA sample collected at intensive care unit (ICU) admission. The detailed methods and the biological parameters measured are summarized in the Supporting Information. The biological characteristics of 90-day survivors compared to non-survivors (Table S1) indicated that non-survivors were more likely to exhibit the presence of SARS-CoV-2 N antigen, along with higher viral RNA load in plasma, higher tissue damage (RNase P RNA), lower lymphocyte counts, and higher neutrophils levels. Additionally, non-survivors exhibited increased concentrations of multiple biomarkers involved in endothelial dysfunction (angiopoietin 2, endothelin-1, ICAM-1 and VCAM-1), inflammation (TNF-α, IL-15 and IL-6), coagulation (D-dimmer), chemotaxis (CXCL10, CCL2, and IL-8), immunosuppression (IL-10, PD-L1, and IL1-RA), T-cell biology (CD27), apoptosis (Fas) and innate immune-related proteins (EGF and SP-D).

Based on these biological characteristics, XGBoost algorithm was employed to develop a model for predicting 90-day mortality (AUROC of 0.80) (Supplementary Figure 1) and SHAP values were obtained to evaluate the influence of each biological feature on the outcome variable (Figure 1). Levels of SARS-CoV-2 N1 RNA was the parameter ranking the first to predict 90-day mortality, following by endothelin-1, IL-15, IL-8, neutrophils, IL-6, TREM-1, CCL2, CD27, SP-D, myeloperoxidase, IL-10, D-dimer, PTX-3, CXCL10, RNase P and VCAM-1, suggesting that viral control, endothelial dysregulation, pro-inflammatory mechanisms and chemotaxis are key biological functions in determining 90-day mortality in critical COVID-19 disease. On the contrary, high levels of the cytokine RANTES, anti-SARS-CoV-2 S IgM and anti-SARS-CoV-2 S IgG antibodies represented a protective factor against mortality.

Details are in the caption following the image
SHAP (SHapley Additive exPlanations) value distribution of the top 20 features obtained in the machine learning model for identifying the 90-day mortality. Each point is a patient. The horizontal position of each point represents the SHAP value (importance higher or lower for prediction) and the direction of each feature for predicting a particular patient. Positive SHAP values predict true positives, and negative SHAP values predict true negatives. The red colour indicates high values, while the blue colour indicates low values of the features for a specific patient. Plasma biomarker values were ln-transformed. SHAP values were calculated using the Python package XGBoost. Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; IL, interleukin; RANTES, regulated on activation, normal T cell expressed and secreted protein; IgG, immunoglobulin G; IgM, immunoglobulin M; TREM-1, triggering receptor expressed on myeloid cells 1; CCL2, chemokine (C-C motif) ligand 2; CD27, cluster differentiation 27 molecule; SP-D, Surfactant protein D; PTX-3, pentraxin 3; CXCL10, C-X-C motif chemokine ligand 10; VCAM-1, vascular cell adhesion protein.

We further classified the patients into three groups or combitypes with different 90-day mortality rate, using a partitional clustering method based on the biological characteristics (Figure 2A, B). The Combitype-1 group was the most common (41.5%) and showed the lowest mortality rate at day 90 after ICU admission (7.7%), followed by the Combitype-2 group (21.5%) with a 90-day mortality rate of 25.4%. The 90-day mortality dramatically increased to 65.9% in the Combitype-3 group, who represented 36.9% of the cohort. Survival mean time in the first 90 days in each group was as follows [days (lower limit—upper limit)]: Combitype-1 [84.7 (82.7–86.8)], Combitype-2 [73.0 (68.5–77.6)] and Combitype-3 [44.2 (40.2–48.2)] (Figure 2C).

Details are in the caption following the image
90-day mortality groups (A) and partitional clustering groups (B) visualized using t-Distributed Stochastic Neighbor Embedding. (C) Kaplan–Meier curves show the cumulative probability of mortality in the first 90 days following ICU admission. T-SNE, t-Distributed Stochastic Neighbor Embedding, p-value, level of significance.

The three groups of 90-day mortality risk exhibited different biological characteristics (Figure 3 and Table S2). The Combitype-1 group had the lowest viral RNA load in plasma, the lowest prevalence of antigenemia, the highest concentration of anti-SARS-CoV-2 S IgG and IgM antibodies, and a homeostatic response to infection, with reduced levels of all pro-inflammatory cytokines and chemoattractant proteins tested (except RANTES). Thus, Combitype-1 could be considered a group of “elite” viral controllers within the population of patients admitted to the ICU.

Details are in the caption following the image
Heat map showing the three distinct patterns of inflammatory immune response by 90-day mortality risk group (combitypes). Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; IgM, immunoglobulin M; IgG, immunoglobulin G; RANTES, regulated on activation normal T-cell expressed and secreted protein; TREM-1, triggering receptor expressed on myeloid cells; G-CSF, granulocyte colony-stimulating factor; ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1; IL, interleukin; TNF, tumour necrosis factor; CXCL-10, C-X-C motif chemokine ligand 10; CCL2, chemokine (C-C motif) ligand 2; IFN, interferon; PD-L1, programmed death-ligand 1; CD-27, cluster differentiation 27 molecule; SP-D, surfactant protein D.

In contrast, the Combitype-2 and -3 groups had a higher viral RNA load and higher prevalence of SASR-CoV-2 N antigen in plasma. The overall biomarker profile in the Combitype-2 and Combitype-3 groups indicated a broad dysregulation of the host response to infection, but with striking differences between these two groups. While the Combitype-2 had moderate viral RNA load along with intermediate levels of inflammatory and endothelial dysfunction biomarkers, the Combitype-3 showed the highest concentration in plasma of lipocalin-2, MPO, VCAM-1, PTX-3, IL-10, CXCL10, angiopoietin-2, IL-6, IL-15, endothelin-1, IL-8, and TREM-1, indicating an exacerbated pro-inflammatory profile coupled with higher endothelial dysregulation and very high viral RNA load in plasma.

These three immune signatures were linked to significant clinical differences (Table 1). Patients in the Combitype-1 group were younger and presented better respiratory function (PaO2/FiO2 ratio), and lower organ dysfunction (SOFA score) at ICU admission, together with lower frequency of hypertension, diabetes, chronic kidney disease, and chronic neurological disease as comorbidities. On the contrary, the Combitype-3 group had the highest prevalence of diabetes and immunosuppression. In terms of complications during hospital admission, the Combitype-1 group needed less often invasive mechanical ventilation and showed a lower frequency of secondary infections, acute kidney injury and septic shock, while the Combitype-3 group suffered more frequently acute liver failure, acute kidney injury, coagulation disorders and septic shock. As mentioned earlier, the Combitype-3 group was the one who presented the highest levels of viral RNA load and pro-inflammatory mediators. Taken together, these results point to the important role of uncontrolled viral replication in the development of multiorgan failure and the extremely high mortality rate observed in this group. In line with these results, a previous investigation has shown a novel mechanism for propagating inflammation, which involves SARS-CoV-2 fragments,9 which could underlie the extrapulmonary pathologies observed in critical COVID-19 patients, particularly in the Combitype-3 group, which exhibited a very high SARS-CoV-2 RNA load in plasma.

TABLE 1. Clinical characteristics of the three groups of 90-day mortality risk established according to partitional clustering analysis.
Combitype-1 Combitype-2 Combitype-3 p-value (1 vs. 2) p-value (1 vs. 3) p-value (2 vs. 3)
No. (%) 326 (41.5) 169 (21.5) 290 (36.9)
Age (years) 61.0 [51.0–69.0] 66.0 [58.0–73.0] 68.5 [61.0–75.0] <0.001 <0.001 0.007
Sex (female) 105 (32.2) 46 (27.2) 90 (31.0) 0.673 0.821 0.673
Days since symptoms onset 10.0 [8.0–13.0] 10.0 [7.0–12.0] 9.0 [7.0–13.0] 0.037 0.037 0.767
Epidemic period
16 Mar. to 21 Jun., 2020 34 (10.4) 10 (5.9) 13 (4.5) 0.237 0.020 0.746
22 Jun. to 6 Dec., 2020 200 (61.3) 102 (60.4) 173 (59.7)
7 Dec. 2020 to 27 Feb. 2021 92 (28.2) 57 (33.7) 104 (35.9)
SOFA 4.0 [3.0 - 6.0] 5.5 [4.0 - 7.2] 5.0 [4.0 - 8.0] <0.001 <0.001 0.940
PaO2/FiO2 ratio 119.1 [85.0 - 164.4] 97.7 [76.7 - 136.0] 100.0 [72.6 - 134.8] 0.001 0.001 0.876
Comorbidities
Hypertension 145 (44.5) 95 (56.2) 177 (61.2) 0.026 <0.001 0.337
Obesity 132 (40.5) 61 (36.1) 84 (29.1) 0.393 0.012 0.218
Diabetes 53 (16.3) 45 (26.6) 112 (38.6) 0.012 <0.001 0.012
Chronic pulmonary disease 32 (9.8) 22 (13.0) 47 (16.2) 0.431 0.074 0.431
Chronic cardiac disease 35 (10.7) 18 (10.7) 47 (16.2) >0.999 0.182 0.207
Chronic kidney disease 9 (2.8) 14 (8.3) 37 (12.8) 0.006 <0.001 0.138
Chronic neurological disease 13 (4.0) 18 (10.7) 27 (9.3) 0.004 0.007 0.641
Immunosuppression 22 (6.7) 10 (5.9) 36 (12.4) 0.721 0.016 0.025
Treatments
Hydroxychloroquine 36 (11.0) 9 (5.3) 11 (3.8) 0.036 0.004 0.601
Lopinavir/ritonavir 28 (8.6) 10 (5.9) 21 (7.3) 0.71 0.71 0.71
Tocilizumab 87 (26.7) 35 (20.7) 72 (25.0) 0.528 0.701 0.528
Remdesivir 65 (19.9) 32 (18.9) 41 (14.2) 0.883 0.236 0.350
Complications
Invasive mechanical ventilation 208 (64.0) 155 (91.7) 262 (90.3) <0.001 <0.001 0.746
Hyperglycaemia 226 (69.3) 132 (78.6) 245 (84.5) 0.057 <0.001 0.141
Secondary infections 136 (41.7) 110 (66.7) 176 (62.4) <0.001 <0.001 0.422
Acute kidney injury 56 (17.2) 53 (31.4) 150 (51.7) <0.001 <0.001 <0.001
Acute liver failure 74 (22.7) 41 (24.3) 101 (34.8) 0.781 0.004 0.036
Coagulation disorders 86 (26.4) 42 (24.9) 124 (42.8) 0.713 <0.001 <0.001
Septic shock 23 (9.8) 26 (22.4) 110 (50.7) 0.001 <0.001 <0.001
Outcomes
UCI stay among survivors (days) 9 (5.0–19.0) 22 (11.0–36.0) 22 (10.0–44.0) <0.001 <0.001 1.000
Hospital stay since ICU admission among survivors (days) 18 (12.0–35.0) 33 (22.0–58.0) 35 (24.0–59.0) <0.001 <0.001 1.000
90-day Mortality 25 (7.7) 43 (25.4) 191 (65.9) <0.001 <0.001 <0.001
  • Statistics: Values are expressed as median (quartile 1 - quartile 3) for continuous variables and absolute count (percentage) for categorical variables. Kruskal–Wallis test with False Discovery Rate adjustment was used to compare continuous variables, and Pearson's Chi-square (𝛘2) or Fisher's exact tests were used to compare categorical variables. Significant differences (p-value < 0.05) are shown in bold. Immunosuppression was a composed variable obtained from the summation of hematologic comorbidity, active malignant neoplasia, HIV (human immunodeficiency virus) infection or AIDS (acquired immune deficiency), solid organ transplantation and bone marrow transplantation.
  • Abbreviations: PaO2/FiO2, ratio of arterial oxygen partial pressure (PaO2 in mmHg) to fractional inspired oxygen (FiO2). Missing data were present for Days since symptoms onset (7), SOFA (15), PaO2/FiO2 ratio (103), Hypertension (1), Obesity (1), Chronic cardiac disease (1), Chronic kidney disease (1), Immunosuppression (1), Hydroxychloroquine (2), Lopinavir/ritonavir (2), Tocilizumab (2), Remdesivir (2), Invasive mechanical ventilation (1), Hyperglycaemia (1) and Septic shock (212).; p-value, level of significance; SOFA, Sequential Organ Failure Assessment.

In conclusion, this is the first study combining SARS-CoV-2 RNA levels with host response data to develop a 90-day mortality prediction model by an XGBoost algorithm and employing SHAP values to evaluate the influence of each biological feature on the outcome variable. Our results showed that SARS-CoV-2 RNA load was the most important biological factor influencing 90-day mortality among COVID-19 patients admitted to the ICU and revealed that endothelin-1 and IL-15 had a higher influence on COVID-19 mortality than other pro-inflammatory cytokines, like IL-6. This prediction model confirmed our previous findings demonstrating that viral N1 RNA load was a predictor of 90-day mortality.4 However, the current clustering analysis considering 33 biological features on top to viral RNA load enabled better classification of patients with different severity (Figure 4), revealing the existence of the group showing a better prognosis within critically ill COVID-19 patients, the “elite” viral controllers. This group represented the largest group of our cohort and exhibited a robust antibody response that prevent uncontrolled viral replication and/or propagation, leading to more homeostatic immune responses to infection and increased survival. These results could help to understand the factors leading to survival not only in severe SARS-CoV-2 infection, but also in the infections caused by other emerging viruses.

Details are in the caption following the image
Machine learning analysis combining host-response and virological data improves the characterization of subgroups of critically ill COVID-19 patients with different prognosis. Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; IgM, immunoglobulin M; IgG, immunoglobulin G; RANTES, regulated on activation normal T-cell expressed and secreted protein; TREM-1, triggering receptor expressed on myeloid cells; G-CSF, granulocyte colony-stimulating factor; ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1; IL, interleukin; TNF, tumour necrosis factor; CXCL-10, C-X-C motif chemokine ligand 10; CCL2, chemokine (C-C motif) ligand 2; IFN, interferon; PD-L1, programmed death-ligand 1; CD-27, cluster differentiation 27 molecule; SP-D, surfactant protein D.

AUTHOR CONTRIBUTIONS

JFBM, APT, SR and AT participated in protocol development, study design and management. JFBM and SR participated in the analysis and interpretation of data. AAM developed the machine learning and statistical analysis and drafted the figures. NGM participated in the coordination of the clinical study, analyzed the data and wrote the manuscript. AO and TP developed the dPCR works and profiled the biomarkers. DVS participated in statistical analysis. LT, PRM, EBM, EGC, AUI, MCT, AE, SCF, IMV, FPG, LS, JLM, PVC, VSM, MGR, NC, MCMD, LJV, CML, RNJG, EM, ALV, WT, JAB, RHM, JB, PE, AMdG, CR, GA, GR, JBM, RC, MSV, EBP, EG, FC, MRN, JMSC, YPM, MTGU, MTBV, AMR, LPB, LRC, NAM, JMG, MLB, JC, CB, JG, MTN, JNdO, EPS, LGG, JCR and JME recruited the patients and collected the clinical data. SR, IM, MMV, MJMG, VM, MV and OC performed the antibody assays. LSR performed the extraction of viral RNA. APT and AdF analyzed the viral load data. NJ participated in profiling the biomarkers. DJK, FB and DdGC participated in the study design. AM, AC, LFB and RA participated in the study design and coordination. All authors have critically revised the manuscript and approved the final version. All authors agree to be accountable in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors confirm that they had full access to all the data in the study, verify the underlying data reported and accept responsibility to submit for publication.

ACKNOWLEDGEMENTS

This work was supported by awards from the Instituto de Salud Carlos III: FONDO—COVID19, COV20/00110, CIBERES, 06/06/0028 (AT), CIBERES, 22/06/00035, Proyectos de Investigación en Salud, PI22/00968 (JFBM), Miguel Servet, CP20/00041 (DdG), Sara Borrell, CD018/0123 (APT) and PFIS, FI20/00278 (AdF). We also received funds from Programa de Donaciones “Estar Preparados”, UNESPA (Madrid, Spain) and from the Canadian Institutes of Health Research (CIHR OV2 - 170357 (DJK/JFBM), Research Nova Scotia, Li-Ka Shing Foundation (DJK) and finally by a Research Grant 2020 from ESCMID (APT). COV20/00110, PI22/00968, CP20/00041, FI20/00278 were co-funded by European Regional Development Fund and European Social Fund (“A way to make Europe”, “Investing in your future”). We are indebted to the Fundació Glória Soler for its contribution and support to the COVIDBANK of HCB-IDIBAPS Biobank. The funding sources did not play any role in any aspect pertinent to the study, including writing of the manuscript and the decision to submit it for publication. This work was not supported by any pharmaceutical company or other agency.

    CONFLICT OF INTEREST STATEMENT

    JFBM, AT, FB, RA, JME and APT have a patent application on SARS-CoV-2 antigenemia as a predictor of mortality in COVID-19.

    The remaining authors declare no conflicts of interest.

    ETHICAL APPROVAL

    This is a sub-study of the CIBERESUCICOVID study (NCT04457505), which received approval from the Institution's Internal Review Board (Comité Ètic d'Investigació Clínica, registry number HCB/2020/0370). Participant hospitals obtained the approval of the respective local ethics committee. The study was performed in full compliance with the Declaration of Helsinki and national and international law on data protection. Informed consent was obtained from each patient or legal representative.

    DATA AVAILABILITY STATEMENT

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

      The full text of this article hosted at iucr.org is unavailable due to technical difficulties.