A new single ended primary inductor converter with high voltage gain, low voltage stress and continuous input current
Corresponding Author
Alireza Jahangiri
Department of Electrical Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran
Correspondence
Alireza Jahangiri, Department of Electrical Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran.
Email: [email protected]
Search for more papers by this authorAli Abdolalizadeh
Department of Electrical Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran
Search for more papers by this authorAhmad Ghaderi Shamim
Department of Electrical Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran
Search for more papers by this authorCorresponding Author
Alireza Jahangiri
Department of Electrical Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran
Correspondence
Alireza Jahangiri, Department of Electrical Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran.
Email: [email protected]
Search for more papers by this authorAli Abdolalizadeh
Department of Electrical Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran
Search for more papers by this authorAhmad Ghaderi Shamim
Department of Electrical Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran
Search for more papers by this authorSummary
This paper proposes a single-ended primary-inductor converter (SEPIC)-based DC-DC converter with higher voltage gain, continuous input current, and lower voltage stress. Suggested converter uses three-winding coupled inductors and voltage multiplier for boosting function. The proposed structure stores lower amount of energy due to lower current magnitudes of used inductors. Moreover, using voltage multiplier reduces the voltage stress of the elements connected to the output terminals of the proposed converter. By reducing the voltage stress, in addition to reducing the rating of output elements and costs, the overall efficiency will also be increased. Also, a clamping circuit is used to diminish the voltage stresses on power switch. In order to represent the advantages of the proposed converter over some other converters in the viewpoints of the number of the used elements, continuity of input current, voltage gain, the voltage stress on power switch, and output diode, a comparison study is provided. To validate the practicability of the proposed converter, a 200-W prototype is implemented and the experimental results are provided.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1Kouro S, Leon JI, Vinnikov D, Franquelo LG. Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology. IEEE Ind Electron Mag. 2015; 9(1): 47-61. doi:10.1109/MIE.2014.2376976
- 2Pesce C, Gimenez RB, Riedemann J, Andrade I, Pena R. A DC-DC converter based on modified flyback converter topology. IEEE Latin America Trans. 2016; 14(9): 3949-3956. doi:10.1109/TLA.2016.7785917
- 3Gorji SA, Ektesabi M, Zheng J. Isolated switched-boost push–pull DC–DC converter for step-up applications. Electron Lett. 2017; 53(3): 177-179. doi:10.1049/el.2016.4151
- 4Wu G, Ruan X, Ye Z. Nonisolated high step-up DC–DC converters adopting switched-capacitor cell. IEEE Trans Ind Electron. 2015; 62(1): 383-393. doi:10.1109/TIE.2014.2327000
- 5Kathiresan J, Natarajan SK, Jothimani G. Design and implementation of modified SEPIC high gain DC-DC converter for DC microgrid applications. Int Trans Electric Energy Syst. 2021; 31(8):e12921.
- 6Martinez W, Cortes C, Yamamoto M, Imaoka J. Effect of inductor parasitic resistances on the voltage gain of high step-up DC–DC converters for electric vehicle applications. IET Power Electron. 2018; 11(10): 1628-1639. doi:10.1049/iet-pel.2017.0361
- 7Babaei E, Jalilzadeh T, Sabahi M, Maalandish M, Alishah RS. High step-up DC-DC converter with reduced voltage stress on devices. Int Trans Electric Energy Syst. 2019; 29(4):e2789. doi:10.1002/etep.2789
- 8Abbasi M, Abbasi E, Tousi B, Gharehpetian GB. New family of expandable step-up/-down DC-DC converters with increased voltage gain and decreased voltage stress on capacitors. Int Trans Electric Energy Syst. 2020; 30(3):e12252.
- 9Abbasi M, Abbasi E, Tousi B, Gharehpetian GB. A zero-current switching switched-capacitor DC-DC converter with reduction in cost, complexity, and size. Int J Circuit Theory Appl. 2019; 47(10): 1630-1644. doi:10.1002/cta.2678
- 10Vosoughi N, Abbasi M, Abbasi E, Sabahi M. A zeta-based switched-capacitor DC-DC converter topology. Int J Circuit Theory Appl. 2019; 47(8): 1302-1322. doi:10.1002/cta.2647
- 11Liu H, Hu H, Wu H, Xing Y, Batarseh I. Overview of high-step-up coupled-inductor boost converters. IEEE J Emerg Sel Top Power Electron. 2016; 4(2): 689-704. doi:10.1109/JESTPE.2016.2532930
- 12Mahmoudi M, Ajami A, Babaei E. A non-isolated high step-up DC-DC converter with integrated 3 winding coupled inductor and reduced switch voltage stress. Int J Circuit Theory Appl. 2018; 46(10): 1879-1898. doi:10.1002/cta.2483
- 13Toebe A, Miguel Klein Faistel T, Andrade A. High step-up buck–boost DC–DC converter with coupled inductor and low component count for distributed PV generation systems. Int J Circuit Theory Appl. 2020; 50(5): 1730-1749. doi:10.1002/cta.3229
- 14Siwakoti YP, Mostaan A, Abdelhakim A, et al. High voltage gain quasi-SEPIC DC-DC converter. IEEE J Emerg Sel Top Power Electron. 2019; 7(2): 1243-1257. doi:10.1109/JESTPE.2018.2859425
- 15Mahmoudi M, Ajami A, Babaei E, Abdolmaleki N, Wang C. A high gain DC-DC topology based on two-winding coupled inductors featuring continuous input current. IEEE Energy Convers Congr Expo. 2020; 2020: 4782-4787.
- 16Rajabi A, Mohammadzadeh Shahir F, Babaei E. Designing a novel voltage-lift technique based non-isolated boost DC-DC converter with high voltage gain. Int Trans Electric Energy Syst. 2021; 31(12):e13213.
- 17Mahmoudi M, Ajami A, Babaei E. A single switch high step-up DC-DC converter with three winding coupled inductor. Int Trans Electric Energy Syst. 2018; 29(1): 1-16. doi:10.1080/09398368.2018.1467158
- 18Premkumar M, Kumar C, Anbarasan A, Sowmya R. A novel non-isolated high step-up DC–DC boost converter using single switch for renewable energy systems. Electric Eng. 2020; 102(2): 811-829. doi:10.1007/s00202-019-00904-8
- 19Alencar Freitas AA, Carneiro de Araújo F, Pereira Aragão FA, et al. Non-isolated high step-up DC–DC converter based on coupled inductors, diode-capacitor networks, and voltage multiplier cells. Int J Circuit Theory Appl. 2021; 50(3): 944-963. doi:10.1002/cta.3182
- 20Chen M, Yin C, Loh PC, Ioinovici A. Improved large DC gain converters with low voltage stress on switches based on coupled-inductor and voltage multiplier for renewable energy applications. IEEE J Emerg Sel Top Power Electron. 2020; 8(3): 2824-2836. doi:10.1109/JESTPE.2019.2906067
- 21Kalahasthi RB, Ramteke MR, Suryawanshi HM, Kothapalli K. A single-switch high gain DC–DC converter for photovoltaic applications. Int J Circuit Theory Appl. 2021; 50(4): 1194-1215.
- 22Wu G, Ruan X, Ye Z. High step-up DC–DC converter based on switched capacitor and coupled inductor. IEEE Trans Ind Electron. 2018; 65(7): 5572-5579. doi:10.1109/TIE.2017.2774773
- 23Salvador MA, de Andrade JM, Lazzarin TB, Coelho RF. Nonisolated high-step-up DC–DC converter derived from switched-inductors and switched-capacitors. IEEE Trans Ind Electron. 2020; 67(10): 8506-8516. doi:10.1109/TIE.2019.2949535
- 24Liu H, Li F. Novel high step-up converter with a quasi-active switched-inductor structure for renewable energy systems. IEEE Trans Power Electron. 2016; 31(7): 5030-5039.
- 25Jalili J, Mirtalaei SMM, Mohammadi MR, Majidi B. A ZVS high step-up converter based on an integrated boost-cuk topology. Electric Eng. 2020; 104(2): 807-816. doi:10.1007/s00202-021-01340-3
- 26Hwu KI, Jiang WZ, Yau YT. Nonisolated coupled-inductor-based high step-down converter with zero DC magnetizing inductance current and nonpulsating output current. IEEE Trans Power Electron. 2016; 31(6): 4362-4377. doi:10.1109/TPEL.2015.2477468
- 27Ben-Yaakov SS. SPICE simulation of ferrite core losses and hot spot temperature estimation. In: 2017 24th IEEE International Conference on Electronics Circuits and Systems (ICECS). IEEE; 2017: 107-110.
10.1109/ICECS.2017.8292005 Google Scholar
- 28Zheng Y, Brown B, Xie W, Li S, Smedley K. High step-up DC–DC converter with zero voltage switching and low input current ripple. IEEE Trans Power Electron. 2020; 35(9): 9416-9429. doi:10.1109/TPEL.2020.2968613
- 29Moradpour R, Tavakoli A. A DC–DC boost converter with high voltage gain integrating three-winding coupled inductor with low input current ripple. Int Trans Electric Energy Syst. 2020; 30(6):e12383. doi:10.1002/2050-7038.12383
- 30Abbasian S, Gohari HS, Farsijani M, Abbaszadeh K, Hafezi H, Filizadeh S. Single-switch resonant soft-switching ultra-high gain DC-DC converter with continuous input current. IEEE Access. 2020; 10: 33482-33491. doi:10.1109/ACCESS.2022.3161456
- 31Hasanpour S, Forouzesh M, Siwakoti Y, Blaabjerg F. A novel full soft switching high gain DC/DC converter based on three-winding coupled inductor. IEEE Trans Power Electron. 2021; 36(11): 12656-12669. doi:10.1109/TPEL.2021.3075724
- 32Radmanesh H, Soltanpour MR, Azizkandi ME. Design and implementation of an ultra-high voltage DC-DC converter based on coupled inductor with continuous input current for clean energy applications. Int J Circuit Theory Appl. 2020; 49(2): 348-379. doi:10.1002/cta.2882
- 33Mahmoudi M, Ajami A, Babaei E, Soleimanifard J. Theoretical and experimental evaluation of SEPIC-based DC-DC converter with two-winding and three-winding coupled inductors. Int J Circuit Theory Appl. 2022; 50(11): 1-20. doi:10.1002/cta.3359
- 34Vesali M, Delshad M, Adib E, Amini MR. A new nonisolated soft switched DC-DC bidirectional converter with high conversion ratio and low voltage stress on the switches. Int Trans Electric Energy Syst. 2021; 31(1):e12666. doi:10.1002/2050-7038.12666
- 35Rahimi R, Habibi S, Shamsi P, Ferdowsi M. A three-winding coupled-inductor-based dual-switch high step-up DC–DC converter for photovoltaic systems. IEEE J Emerg Sel Top Power Electron. 2022; 3(4): 1106-1117. doi:10.1109/JESTIE.2022.3151554
10.1109/JESTIE.2022.3151554 Google Scholar