Well-Controlled Block-Type Cyclic Olefin Copolymers with High Heat Resistance, Outstanding Strength and Low-Temperature Toughness
Dong Huang
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJin Li
Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206 China
Search for more papers by this authorXu Lu
Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206 China
Search for more papers by this authorKunyu Zhang
Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206 China
Search for more papers by this authorFei Wang
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDi Wu
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYafei Wang
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Li Pan
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]Search for more papers by this authorYang Li
Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206 China
Search for more papers by this authorYuesheng Li
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDong Huang
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJin Li
Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206 China
Search for more papers by this authorXu Lu
Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206 China
Search for more papers by this authorKunyu Zhang
Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206 China
Search for more papers by this authorFei Wang
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDi Wu
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYafei Wang
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Li Pan
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]Search for more papers by this authorYang Li
Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206 China
Search for more papers by this authorYuesheng Li
Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorComprehensive Summary
As an important class of transparent polyolefins, cyclic olefin copolymers (COCs) exhibit a wide range of properties, from soft (low cyclic unit content in a random copolymer) to hard (high cyclic unit content in a random copolymer) thermoplastics. A higher cyclic unit content in a random copolymer results in increased rigidity and heat resistance, but at the expense of material toughness, especially under low temperature. To achieve a trade-off, block-type COCs composed of well-defined hard-soft and hard-soft-hard segments with high molecular weights (Mn > 200 kDa) and relatively narrow molecular weight distributions (Mw/Mn < 1.42) were prepared via quasi-living copolymerization. Compared to random copolymers, di-block COCs retained satisfactory heat resistance and optical transparency and exhibited superior tensile properties (tensile strength: 56.2 MPa, elongation at break: 254.4%), while tri-block COCs with the same hard-soft segments and an additional hard segment exhibited even better tensile properties, achieving a tensile strength of 67.3 MPa, elongation at break of 286.9%, all while maintaining high optical transmittance (> 90%). Even at temperatures below 0 °C, the tri-block copolymers EN52-b-EN19-b-EN46 demonstrated a satisfactory tensile strength (> 64.0 MPa) and elongation at break (> 65.6%), highlighting the advantages of the alternating hard-soft segment structural design in COCs.
Supporting Information
Filename | Description |
---|---|
cjoc202401144-sup-0001-supinfo.pdfPDF document, 1.5 MB |
Appendix S1: Supporting Information |
cjoc202401144-sup-0002-supinfo.mp4MPEG-4 video, 5.6 MB |
Appendix S2: Supporting Information |
cjoc202401144-sup-0003-supinfo.mp4MPEG-4 video, 1.3 MB |
Appendix S3: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Polymeropoulos, G.; Zapsas, G.; Ntetsikas, K.; Bilalis, P.; Gnanou, Y.; Hadjichristidis, N. 50th Anniversary Perspective: Polymers with Complex Architectures. Macromolecules 2017, 50, 1253–1290.
- 2 Shim, J.; Bates, F. S.; Lodge, T. P. Superlattice by Charged Block Copolymer Self-assembly. Nat. Commun. 2019, 10, 2108–2114.
- 3 Wang, W.; Lu, W.; Goodwin, A.; Wang, H.; Yin, P.; Kang, N.; Hong, K.; Mays, J. W. Recent Advances in Thermoplastic Elastomers from Living Polymerizations: Macromolecular Architectures and Supramolecular Chemistry. Prog. Polym. Sci. 2019, 95, 1–31.
- 4 Bates, C. M.; Bates, F. S. 50th Anniversary Perspective: Block Polymers-Pure Potential. Macromolecules 2016, 50, 3–22.
- 5 Kocen, A. L.; Cui, S.; Lin, T. W.; LaPointe, A. M.; Coates, G. W. Chemically Recyclable Ester-Linked Polypropylene. J. Am. Chem. Soc. 2022, 144, 12613–12618.
- 6 Vialon, T.; Sun, H.; Formon, G. J. M.; Galanopoulo, P.; Guibert, C.; Averseng, F.; Rager, M. N.; Percot, A.; Guillaneuf, Y.; Van Zee, N. J.; Nicolaÿ, R. Upcycling Polyolefin Blends into High-Performance Materials by Exploiting Azidotriazine Chemistry Using Reactive Extrusion. J. Am. Chem. Soc. 2024, 146, 2673–2684.
- 7 Yan, T.; Walsh, D. J.; Qiu, C.; Guironnet, D. One-Pot Synthesis of Block Copolymers Containing a Polyolefin Block. Macromolecules 2018, 51, 10167–10173.
- 8 Dau, H.; Jones, G. R.; Tsogtgerel, E.; Nguyen, D.; Keyes, A.; Liu, Y. S.; Rauf, H.; Ordonez, E.; Puchelle, V.; Basbug Alhan, H.; Zhao, C.; Harth, E. Linear Block Copolymer Synthesis. Chem. Rev. 2022, 122, 14471–14553.
- 9 Han, X. W.; Zhang, X.; Zhou, Y.; Maimaitiming, A.; Sun, X. L.; Gao, Y.; Li, P.; Zhu, B.; Chen, E. Y. X.; Kuang, X.; Tang, Y. Circular Olefin Copolymers Made De novo from Ethylene and α-olefins. Nat. Commun. 2024, 15, 1462–1472.
- 10 Froese, R. D.; Arriola, D. J.; den Doelder, J.; Hou, J.; Kashyap, T.; Lu, K.; Martinetti, L.; Stubbert, B. D. A Commercially Viable Solution Process to Control Long-Chain Branching in Polyethylene. Science 2024, 383, 1223–1228.
- 11 Nan, C.; Pang, T.; Zhao, J.; Fan, L.; Zou, C.; Hao, X.; Song, M.; Gong, J.; Chen, C.; Jiang, H. Novel Photoresponsive Dinuclear Nickel Catalysts for Ethylene (Co)Polymerization. Sci. China Chem. 2024, 67, 1–9.
- 12 Kang, Y.; Lv, Y.; Ma, Z.; Pan, L. Preparation and Characterization of Isotactic Polypropylene-Based Block Copolymers with Cyclic Units. Polymer 2024, 299, 126952–126959.
- 13 Baulu, N.; Langlais, M.; Ngo, R.; Thuilliez, J.; Jean-Baptiste-dit-Dominique, F.; D'Agosto, F.; Boisson, C. Switch from Anionic Polymerization to Coordinative Chain Transfer Polymerization: A Valuable Strategy to Make Olefin Block Copolymers. Angew. Chem. Int. Ed. 2022, 61, 1–6.
- 14 Gao, H.; Lu, X.; Chen, S.; Du, B.; Yin, X.; Kang, Y.; Zhang, K.; Liu, C.; Pan, L.; Wang, B.; Ma, Z.; Li, Y. S. Preparation of Well-Controlled Isotactic Polypropylene-Based Block Copolymers with Superior Physical Performance via Efficient Coordinative Chain Transfer Polymerization. Macromolecules 2022, 55, 5038–5048.
- 15 Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization. Science 2006, 312, 714–719.
- 16 Yan, T.; Guironnet, D. Polyethylene Containing Triblock Copolymers Synthesized by Post-polymerization Functionalization. Macromolecules 2020, 53, 4338–4344.
- 17 Eagan, J. M.; Xu, J.; Di Girolamo, R.; Thurber, C. M.; Macosko, C. W.; LaPointe, A. M.; Bates, F. S.; Coates, G. W. Combining Polyethylene and Polypropylene: Enhanced Performance with PE/iPP Multiblock Polymers. Science 2017, 355, 814–816.
- 18 Cicolella, A.; De Stefano, F.; Scoti, M.; Talarico, G.; Eagan, J. M.; Coates, G. W.; Di Girolamo, R.; De Rosa, C. Phase Separation and Crystallization in Monodisperse Block Copolymers of Linear Low- Density Polyethylene and Isotactic Polypropylene. Macromolecules 2024, 57, 2230–2245.
- 19 Matsushita, Y.; Nomura, M.; Watanabe, J.; Mogi, Y.; Noda, I.; Imai, M. Alternating Lamellar Structure of Triblock Copolymers of the ABA Type. Macromolecules 1995, 28, 6007–6013.
- 20 De Rosa, C.; Malafronte, A.; Di Girolamo, R.; Auriemma, F.; Scoti, M.; Ruiz de Ballesteros, O.; Coates, G. W. Morphology of Isotactic Polypropylene–Polyethylene Block Copolymers Driven by Controlled Crystallization. Macromolecules 2020, 53, 10234–10244.
- 21 Barber, D. M.; Crosby, A. J.; Emrick, T. Mesoscale Block Copolymers. Adv. Mater. 2018, 30, 1706118–1706123.
- 22 Hustad, P. D. Frontiers in Olefin Polymerization: Reinventing the World's Most Common Synthetic Polymers. Science 2009, 325, 704–707.
- 23 Sakuma, A.; Weiser, M. S.; Fujita, T. Living Olefin Polymerization and Block Copolymer Formation with FI Catalysts. Polym. J. 2007, 39, 193–207.
- 24 Mitani, M.; Nakano, T.; Fujita, T. Unprecedented Living Olefin Polymerization Derived from an Attractive Interaction Between a Ligand and a Growing Polymer Chain. Chem. Eur. J. 2003, 9, 2396–2403.
- 25 Shiono, T. Living Polymerization of Olefins with Ansa Dimethylsilylene(fluorenyl)(amido) dimethyltitanium-Based Catalysts. Polym. J. 2011, 43, 331–351.
- 26 Coates, G. W.; Hustad, P. D.; Reinartz, S. Catalysts for the Living Insertion Polymerization of Alkenes: Access to New Polyolefin Architectures Using Ziegler–Natta Chemistry. Angew. Chem. Int. Ed. 2002, 41, 2236–2257.
- 27 Wolff, P.; Dickert, A.; Kretschmer, W. P.; Kempe, R. iPP/PE Multiblock Copolymers for Plastic Blend Recycling Synthesized by Coordinative Chain Transfer Polymerization. Macromolecules 2022, 55, 6435–6442.
- 28 Gao, H.; Chen, S.; Du, B.; Dai, Z.; Lu, X.; Zhang, K.; Pan, L.; Li, Y.; Li, Y. Cyclic Olefin Copolymers Containing Both Linear Polyethylene and Poly(ethylene-co-norbornene) Segments Prepared from Chain Shuttling Copolymerization of Ethylene and Norbornene. Polym. Chem. 2022, 13, 245–257.
- 29 Vittoria, A.; Urciuoli, G.; Costanzo, S.; Ianniello, V.; Cipullo, R.; Cannavacciuolo, F. D.; De Ballesteros, O. R.; Busico, V.; Grizzuti, N.; Auriemma, F. Synthesis of Statistical Multiblock Copolymers through Chain Shuttling Copolymerization with a Thermomechanical Switch Behavior. Macromolecules 2024, 57, 1532–1545.
- 30 Valente, A.; Stoclet, G.; Bonnet, F.; Mortreux, A.; Visseaux, M.; Zinck, P. Isoprene–Styrene Chain Shuttling Copolymerization Mediated by a Lanthanide Half-Sandwich Complex and a Lanthanidocene: Straightforward Access to a New Type of Thermoplastic Elastomers. Angew. Chem. Int. Ed. 2014, 53, 4638–4641.
- 31 Mundil, R.; Bravo, C.; Merle, N.; Zinck, P. Coordinative Chain Transfer and Chain Shuttling Polymerization. Chem. Rev. 2024, 124, 210–244.
- 32 Harney, M. B.; Zhang, Y.; Sita, L. R. Discrete, Multiblock Isotactic–Atactic Stereoblock Polypropene Microstructures of Differing Block Architectures through Programmable Stereomodulated Living Ziegler–Natta Polymerization. Angew. Chem. Int. Ed. 2006, 45, 2400–2404.
- 33 Yoon, J.; Mathers, R. T.; Coates, G. W.; Thomas, E. L. Optically Transparent and High Molecular Weight Polyolefin Block Copolymers toward Self-Assembled Photonic Band Gap Materials. Macromolecules 2006, 39, 1913–1919.
- 34 Ban, H. T.; Kase, T.; Kawabe, M.; Miyazawa, A.; Ishihara, T.; Hagihara, H.; Tsunogae, Y.; Murata, M.; Shiono, T. A New Approach to Styrenic Thermoplastic Elastomers: Synthesis and Characterization of Crystalline Styrene−Butadiene−Styrene Triblock Copolymers. Macromolecules 2006, 39, 171–176.
- 35 Proto, A.; Avagliano, A.; Saviello, D.; Ricciardi, R.; Capacchione, C. Living, Isoselective Polymerization of Styrene and Formation of Stereoregular Block Copolymers via Sequential Monomer Addition. Macromolecules 2010, 43, 5919–5921.
- 36 Killian, C. M.; Tempel, D. J.; Johnson, L. K.; Brookhart, M. Living Polymerization of α-Olefins Using NiII−α-Diimine Catalysts. Synthesis of New Block Polymers Based on α-Olefins. J. Am. Chem. Soc. 1996, 118, 11664–11665.
- 37 Domski, G. J.; Rose, J. M.; Coates, G. W.; Bolig, A. D.; Brookhart, M. Living Alkene Polymerization: New Methods for the Precision Synthesis of Polyolefins. Prog. Polym. Sci. 2007, 32, 30–92.
- 38
Tshuva, E. Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Living Polymerization and Block Copolymerization of α-Olefins by an Amine Bis(phenolate) Titanium Catalyst. Chem. Commun. 2001, 20, 2120–2121.
10.1039/b105492a Google Scholar
- 39 Leone, G.; Mauri, M.; Bertini, F.; Canetti, M.; Piovani, D.; Ricci, G. Ni(II) α-Diimine-Catalyzed α-Olefins Polymerization: Thermoplastic Elastomers of Block Copolymers. Macromolecules 2015, 48, 1304–1312.
- 40 Kang, Y.; Wang, H.; Li, X.; Meng, F.; Liu, H.; Xiao, Y.; Jiang, Z.; Gao, H.; Liu, C.; Wang, F.; Pan, L.; Li, Y. Efficient Preparation of Isotactic Polypropylene-Based Block Copolymers with Tunable Mechanical Properties: From Thermoplastics to Elastomers. Macromolecules 2024, 57, 4208–4219.
- 41 Song, X.; Cao, L.; Tanaka, R.; Shiono, T.; Cai, Z. Optically Transparent Functional Polyolefin Elastomer with Excellent Mechanical and Thermal Properties. ACS Macro Lett. 2019, 8, 299–303.
- 42 Walsh, D. J.; Su, E.; Guironnet, D. Catalytic Synthesis of Functionalized (Polar and Non-Polar) Polyolefin Block Copolymers. Chem. Sci. 2018, 9, 4703–4707.
- 43 Chung, T. C. Synthesis of Functional Polyolefin Copolymers with Graft and Block Structures. Prog. Polym. Sci. 2002, 27, 39–85.
- 44 Yoshida, Y.; Mohri, J.; Ishii, S.; Mitani, M.; Saito, J.; Matsui, S.; Makio, H.; Nakano, T.; Tanaka, H.; Onda, M.; Yamamoto, Y.; Mizuno, A.; Fujita, T. Living Copolymerization of Ethylene with Norbornene Catalyzed by Bis(pyrrolide−imine) Titanium Complexes with MAO. J. Am. Chem. Soc. 2004, 126, 12023—12032.
- 45 Pan, L.; Hong, M.; Liu, J. Y.; Ye, W. P.; Li, Y. S. Living Copolymerization of Ethylene with Dicyclopentadiene Using Titanium Catalyst: Formation of Well-Defined Polyethylene-block-Poly(ethylene-co-dicyclopentadiene)s and Their Transformation into Novel Polyolefin-block- (Functional polyolefin)s. Macromolecules 2009, 42, 4391–4393.
- 46 Diamanti, S. J.; Khanna, V.; Hotta, A.; Yamakawa, D.; Shimizu, F.; Kramer, E. J.; Fredrickson, G. H.; Bazan, G. C. Synthesis of Block Copolymer Segments Containing Different Ratios of Ethylene and 5-Norbornen-2-yl Acetate. J. Am. Chem. Soc. 2004, 126, 10528–10529.
- 47 Fujita, M.; Coates, G. W. Synthesis and Characterization of Alternating and Multiblock Copolymers from Ethylene and Cyclopentene. Macromolecules 2002, 35, 9640–9647.
- 48 Jansen, J. C.; Mendichi, R.; Locatelli, P.; Tritto, I. Evidence of the Quasi-Living Character of the ansa-Zirconocene/MAO-Catalyzed Copolymerization of Ethylene and Norbornene. Macromol. Rapid. Commun. 2001, 22, 1394–1398.
- 49 Thorshaug, K.; Mendichi, R.; Boggioni, L.; Tritto, I.; Trinkle, S.; Friedrich, C.; Mülhaupt, R. Poly(ethene-co-norbornene) Obtained with a Constrained Geometry Catalyst. A Study of Reaction Kinetics and Copolymer Properties. Macromolecules 2002, 35, 2903–2911.
- 50 Terao, H.; Iwashita, A.; Ishii, S.; Tanaka, H.; Yoshida, Y.; Mitani, M.; Fujita, T. Ethylene/Norbornene Copolymerization Behavior of Bis(phenoxy−imine)Ti Complexes Combined with MAO. Macromolecules 2009, 42, 4359–4361.
- 51
Yoshida, Y.; Saito, J.; Mitani, M.; Takagi, Y.; Matsui, S.; Ishii, S.; Nakano, T.; Kashiwa, N.; Fujita, T. Living Ethylene/Norbornene Copolymerisation Catalyzed by Titanium Complexes Having Two Pyrrolide-imine Chelate Ligands. Chem. Commun. 2002, 6, 1298–1299.
10.1039/b202391a Google Scholar
- 52 Shiono, T. Living Polymerization of Olefins with ansa-Dimethylsilylene(fluorenyl) (amido)dimethyltitanium-Based Catalysts. Polym. J. 2011, 43, 331–351.
- 53 Tanaka, R.; Ikeda, T.; Nakayama, Y.; Shiono, T. Pseudo-Living Copolymerization of Norbornene and ω-Alkenylborane–Synthesis of Monodisperse Functionalized Cycloolefin Copolymer. Polymer 2015, 56, 218–222.
- 54 Tanaka, R.; Suenaga, T.; Cai, Z.; Nakayama, Y.; Shiono, T. Synthesis and Thermal, Mechanical, and Optical Properties of A–B–A or A–B Block Copolymers Containing Poly(norbornene-co-1-octene). J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 267–271.
- 55 Yuan, H.; Kida, T.; Tanaka, R.; Cai, Z.; Nakayama, Y.; Shiono, T. Synthesis and Properties of Block Copolymers Composed of Norbornene/Higher α-Olefin Gradient Segments using Ansa-Fluorenylamidodimethyltitanium-[Ph3C][B(C6F5)4] Catalyst System. Polym. Chem. 2021, 12, 189–195.
- 56 Yuan, H.; Kida, T.; Tanaka, R.; Cai, Z.; Nakayama, Y.; Kihara, S. I.; Shiono, T. Star Polymers with Norbornene/1-Octene Gradient Copolymer Arms Synthesized by an Ansa-Fluorenylamidodimethyltitanium-[Ph3C][B(C6F5)4] Catalyst System. Polymer 2022, 249, 124844–124850.
- 57 Li, X. F.; Dai, K.; Ye, W. P.; Pan, L.; Li, Y. S. New Titanium Complexes with Two β-Enaminoketonato Chelate Ligands: Syntheses, Structures, and Olefin Polymerization Activities. Organometallics 2004, 23, 1223–1230.
- 58 Fang, Z.; Mu, H.; Sun, Z.; Zhang, K.; Zhang, A.; Chen, J.; Zheng, N.; Zhao, Q.; Yang, X.; Liu, F.; Wu, J.; Xie, T. 3D Printable Elastomers with Exceptional Strength and Toughness. Nature 2024, 631, 783–788.
- 59 Qiu, N.; Sun, Z.; Yu, F.; Wang, K.; Long, C.; Dong, Z.; Li, Y.; Cao, K.; Chen, Z. Chain Shuttling Polymerization for Cycloolefin Block Copolymers: From Engineering Plastics to Thermoplastic Elastomers. Macromolecules 2024, 57, 5729–5738.
- 60 Wang, D.; Fujinami, S.; Liu, H.; Nakajima, K.; Nishi, T. Investigation of True Surface Morphology and Nanomechanical Properties of Poly(styrene-b-ethylene-co-butylene-b-styrene) Using Nanomechanical Mapping: Effects of Composition. Macromolecules 2010, 43, 9049–9055.
- 61 Takano, A.; Kamaya, I.; Takahashi, Y.; Matsushita, Y. Effect of Loop/ Bridge Conformation Ratio on Elastic Properties of the Sphere- Forming ABA Triblock Copolymers: Preparation of Samples and Determination of Loop/Bridge Ratio. Macromolecules 2005, 38, 9718–9723.
- 62 Huang, D.; Lu, X.; Zhang, K.; Wang, Y.; Wang, F.; Gao, H.; Ding, Y.; Pan, L.; Li, Y.; Li, Y. Ultra-High-Molecular Weight Cyclic Olefin Copolymers with Excellent All-Round Performance Prepared via Highly Effective Quasi-Living Copolymerization. Chem. Eng. J. 2024, 494, 153256–153266.
- 63 Hong, M.; Cui, L.; Liu, S.; Li, Y. Synthesis of Novel Cyclic Olefin Copolymer (COC) with High Performance via Effective Copolymerization of Ethylene with Bulky Cyclic Olefin. Macromolecules 2012, 45, 5397–5402.
- 64 Zhao, Y.; Zhang, Y.; Cui, L.; Jian, Z. Cyclic Olefin Terpolymers with High Refractive Index and High Optical Transparency. ACS Macro Lett. 2023, 12, 395–400.
- 65 Dong, S.; Duan, X.; Nan, T.; Lin, C.; Liu, B.; Cui, D. Substituent Effect of Styryl Monomers on Composition and Property Enhancement of Dicyclopentadiene-Based Cycloolefin Copolymers. Macromolecules 2023, 56, 8912–8919.
- 66 Kim, E. C.; Kim, M.; Thi Ho, L. N.; Lee, W.; Ka, J.; Kim, D.; Shin, T. J.; Huh, K. M.; Park, S.; Kim, Y. S. Synthesis of Vinyl-Addition Polynorbornene Copolymers Bearing Pendant n-Alkyl Chains and Systematic Investigation of their Properties. Macromolecules 2021, 54, 6762–6771.
- 67 Chae, C.; Go, Y.; Choi, J.; Park, D.; Ho, L. N. T.; Bak, I.; Park, J. W.; Jung, K.; Park, S.; Lee, W.; Kim, D.; Kim, H.; Ryu, J. Y.; Chung, T.; Park, B. K.; Kim, Y. S. Palladium(II)-Catalyzed Synthesis of a Vinyl-Addition Ultrahigh-Molecular-Weight Polynorbornene Copolymer with an Entanglement Network for Enhanced Fracture Resistance. Macromolecules 2024, 57, 565–573.
- 68 Wang, F.; Huang, D.; Gao, H.; Wang, F.; Pan, L.; Li, Y. Synthesis of Bimodal Distributed Cyclic Olefin Copolymers with Improved Tensile Properties. Chin. J. Chem. 2022, 40, 1931–1938.
- 69 Barletta, M.; Aversa, C.; Puopolo, M.; Vesco, S. Extrusion Blow Molding of Environmentally Friendly Bottles in Biodegradable Polyesters Blends. Polym. Test. 2019, 77, 105885–105896.
- 70 Rosato, D.; Rosato, D. Blow Molding Handbook, Hanser Publishers, New York, 1989.
- 71 Yuan, H.; Kida, T.; Kim, H.; Tanaka, R.; Cai, Z.; Nakayama, Y.; Shiono, T. Synthesis and Properties of Gradient Copolymers Composed of Norbornene and Higher α-Olefins Using an Ansa-Fluorenylamidodimethyltitanium-[Ph3C][B(C6F5)4] Catalyst System. Macromolecules 2020, 53, 4323–4329.
- 72 Hirai, T.; Yagi, K.; Nakai, K.; Okamoto, K.; Matsunaga, T.; Okamoto, H. Transparent Thermoplastic Composite from a Refractive Index-Adjustable Polymer Blend. Compos. Part B-Eng. 2021, 225, 109258–109265.