To Maximize Luminescence for an Efficient Organic Solar Cell†
Yifei Geng
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTengfei Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Zhenzhen Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yuze Lin
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYifei Geng
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTengfei Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Zhenzhen Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yuze Lin
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]Search for more papers by this author† Dedicated to the Special Issue of Emerging Investigators in 2024.
Abstract
Comprehensive Summary
With the continuous development of photovoltaic materials, organic solar cells (OSCs) have made remarkable advancements, surpassing a power conversion efficiency (PCE) of 20%. However, the PCEs of OSCs remain lower than that of inorganic solar cells due to significant energy losses, mainly stemming from the relatively large non-radiative recombination losses (usually be expressed as ∆E3), resulting in low open-circuit voltages. This can be achieved by reducing non-radiative recombination, and hereby increasing the electroluminescence quantum efficiency (EQEEL) of the photo-active layer. This review analyzes the significance of luminescence efficiency in achieving high-performance OSCs by examining the reciprocal relationship between ∆E3 and EQEEL. High-efficiency organic solar cells can also be used as effective organic light-emitting diodes (OLEDs). The discussion provides insights into the influencing factors of EQEEL and the mechanisms for adjusting various parameters, which include enhancements in photoluminescence quantum yield and the proportion of radiative excitons. The objective is to offer insights into the crucial role of luminescence performance in OSC development, guiding researchers toward developing novel photovoltaic materials or optimization strategies to enhance the luminescence performance of the active layer in OSCs, fostering the simultaneous advancement of OSCs and OLEDs.
Key Scientists
References
- 1 Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.
- 2 Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666–12731.
- 3 Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118, 3447–3507.
- 4 Tang, H.; Bai, Y.; Zhao, H.; Qin, X.; Hu, Z.; Zhou, C.; Huang, F.; Cao, Y. Interface Engineering for Highly Efficient Organic Solar Cells. Adv. Mater. 2023, 36, 2212236.
- 5 Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.
- 6 Wang, J.; Xue, P.; Jiang, Y.; Huo, Y.; Zhan, X. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 2022, 6, 614–634.
- 7 Armin, A.; Li, W.; Sandberg, O. J.; Xiao, Z.; Ding, L.; Nelson, J.; Neher, D.; Vandewal, K.; Shoaee, S.; Wang, T.; Ade, H.; Heumüller, T.; Brabec, C.; Meredith, P. A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells. Adv. Energy Mater. 2021, 11, 2003570.
- 8 Lu, H.; Liu, W.; Ran, G.; Liang, Z.; Li, H.; Wei, N.; Wu, H.; Ma, Z.; Liu, Y.; Zhang, W.; Xu, X.; Bo, Z. High-Pressure Fabrication of Binary Organic Solar Cells with High Molecular Weight D18 Yields Record 19.65 % Efficiency. Angew. Chem. Int. Ed. 2023, 62, e202314420.
- 9 Chen, Z.; Ge, J.; Song, W.; Tong, X.; Liu, H.; Yu, X.; Li, J.; Shi, J.; Xie, L.; Han, C.; Liu, Q.; Ge, Z. 20.2% Efficiency Organic Photovoltaics Employing a π-Extension Quinoxaline-Based Acceptor with Ordered Arrangement. Adv. Mater. 2024, 36, 2406690.
- 10 Liang, Z.; Zhang, Y.; Xu, H.; Chen, W.; Liu, B.; Zhang, J.; Zhang, H.; Wang, Z.; Kang, D. H.; Zeng, J.; Gao, X.; Wang, Q.; Hu, H.; Zhou, H.; Cai, X.; Tian, X.; Reiss, P.; Xu, B.; Kirchartz, T.; Xiao, Z.; Dai, S.; Park, N. G.; Ye, J.; Pan, X. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 2023, 624, 557–563.
- 11 Mariotti, S.; Köhnen, E.; Scheler, F.; Sveinbjörnsson, K.; Zimmermann, L.; Piot, M.; Yang, F.; Li, B.; Warby, J.; Musiienko, A.; Menzel, D.; Lang, F.; Keßler, S.; Levine, I.; Mantione, D.; Al-Ashouri, A.; Härtel, M. S.; Xu, K.; Cruz, A.; Kurpiers, J.; Wagner, P.; Köbler, H.; Li, J.; Magomedov, A.; Mecerreyes, D.; Unger, E.; Abate, A.; Stolterfoht, M.; Stannowski, B.; Schlatmann, R.; Korte, L.; Albrecht, S. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 2023, 381, 63–69.
- 12 NREL's Best Research-Cell Efficiency Chart, 2023, https://www.nrel.gov/pv/cell-efficiency.html (accessed 2023 12/31).
- 13
Liu, C.; Fu, Y.; Zhou, J.; Wang, L.; Guo, C.; Cheng, J.; Sun, W.; Chen, C.; Zhou, J.; Liu, D.; Li, W.; Wang, T. Alkoxythiophene-Directed Fibrillization of Polymer Donor for Efficient Organic Solar Cells. Adv. Mater. 2023, 36, 2308608.
10.1002/adma.202308608 Google Scholar
- 14 Bi, P.; Zhang, S.; Chen, Z.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J.; Qin, J.; Hong, L.; Hao, X.; Hou, J. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5, 2408–2419.
- 15 Azzouzi, M.; Kirchartz, T.; Nelson, J. Factors Controlling Open-Circuit Voltage Losses in Organic Solar Cells. Trends Chem. 2019, 1, 49–62.
- 16 Nugraha, M. I.; Ling, Z.; Aniés, F.; Ardhi, R. E. A.; Gedda, M.; Naphade, D.; Tsetseris, L.; Heeney, M.; Anthopoulos, T. D. Over 19% Efficient Inverted Organic Photovoltaics Featuring a Molecularly Doped Metal Oxide Electron-Transporting Layer. Adv. Mater. 2024, 2310933.
- 17 Rau, U.; Blank, B.; Müller, T. C. M.; Kirchartz, T. Efficiency Potential of Photovoltaic Materials and Devices Unveiled by Detailed-Balance Analysis. Phys. Rev. Appl. 2017, 7, 044016.
- 18 Guillemoles, J.-F.; Kirchartz, T.; Cahen, D.; Rau, U. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photonics 2019, 13, 501–505.
- 19 Menke, S. M.; Ran, N. A.; Bazan, G. C.; Friend, R. H. Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime. Joule 2018, 2, 25–35.
- 20 Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 2007, 76, 085303.
- 21 Wilson, J. S.; Chawdhury, N.; Al-Mandhary, M. R. A.; Younus, M.; Khan, M. S.; Raithby, P. R.; Köhler, A.; Friend, R. H. The Energy Gap Law for Triplet States in Pt-Containing Conjugated Polymers and Monomers. J. Am. Chem. Soc. 2001, 123, 9412–9417.
- 22 Li, S.; Zhan, L.; Jin, Y.; Zhou, G.; Lau, T.-K.; Qin, R.; Shi, M.; Li, C.-Z.; Zhu, H.; Lu, X.; Zhang, F.; Chen, H. Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics. Adv. Mater. 2020, 32, 2001160.
- 23 Sun, C.; Qin, S.; Wang, R.; Chen, S.; Pan, F.; Qiu, B.; Shang, Z.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y. High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. J. Am. Chem. Soc. 2020, 142, 1465–1474.
- 24 Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat. Mater. 2009, 8, 904–909.
- 25 Chen, X.-K.; Coropceanu, V.; Brédas, J.-L. Assessing the nature of the charge-transfer electronic states in organic solar cells. Nat. Commun. 2018, 9, 5295.
- 26 Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161.
- 27 Miller, O. D.; Yablonovitch, E.; Kurtz, S. R. Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit. IEEE J. Photovolt. 2012, 2, 303–311.
- 28 Liu, Q.; Vandewal, K. Understanding and Suppressing Non-Radiative Recombination Losses in Non-Fullerene Organic Solar Cells. Adv. Mater. 2023, 35, e2302452.
- 29 Liu, Q.; Smeets, S.; Mertens, S.; Xia, Y.; Valencia, A.; D’Haen, J.; Maes, W.; Vandewal, K. Narrow electroluminescence linewidths for reduced nonradiative recombination in organic solar cells and near-infrared light-emitting diodes. Joule 2021, 5, 2365–2379.
- 30 Yuan, J.; Zhang, H.; Zhang, R.; Wang, Y.; Hou, J.; Leclerc, M.; Zhan, X.; Huang, F.; Gao, F.; Zou, Y.; Li, Y. Reducing Voltage Losses in the A-DA′D-A Acceptor-Based Organic Solar Cells. Chem 2020, 6, 2147–2161.
- 31 Geffroy, B.; le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 2006, 55, 572–582.
- 32 He, D.; Zhao, F.; Wang, C.; Lin, Y. Non-Radiative Recombination Energy Losses in Non-Fullerene Organic Solar Cells. Adv. Funct. Mater. 2022, 32, 2111855.
- 33 Zhao, C.; Li, C.; Li, Y.; Qiu, Y.; Duan, L. Understanding the operational lifetime expansion methods of thermally activated delayed fluorescence sensitized OLEDs: a combined study of charge trapping and exciton dynamics. Mater. Chem. Front. 2019, 3, 1181–1191.
- 34 Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 2004, 32, 510–519.
- 35 Wang, J.; Yang, Y.; Sun, X.; Li, X.; Zhang, L.; Li, Z. Management of triplet excitons transition: fine regulation of Förster and dexter energy transfer simultaneously. Light-Sci. Appl. 2024, 13, 35.
- 36 Kuklinski, J. R.; Mukamel, S. Radiative decay in semiconductor quantum dots at finite temperatures. Chem. Phys. Lett. 1992, 189, 119–127.
- 37 Swenson, N. K.; Ratner, M. A.; Weiss, E. A. Computational Study of the Influence of the Binding Geometries of Organic Ligands on the Photoluminescence Quantum Yield of CdSe Clusters. J. Phys. Chem. C 2016, 120, 6859–6868.
- 38 Collado-Fregoso, E.; Pugliese, S. N.; Wojcik, M.; Benduhn, J.; Bar-Or, E.; Perdigón Toro, L.; Hörmann, U.; Spoltore, D.; Vandewal, K.; Hodgkiss, J. M.; Neher, D. Energy-Gap Law for Photocurrent Generation in Fullerene-Based Organic Solar Cells: The Case of Low-Donor-Content Blends. J. Am. Chem. Soc. 2019, 141, 2329–2341.
- 39 Gould, I. R.; Noukakis, D.; Gomez-Jahn, L.; Young, R. H.; Goodman, J. L.; Farid, S. Radiative and nonradiative electron transfer in contact radical-ion pairs. Chem. Phys. 1993, 176, 439–456.
- 40 Nitzan, A.; Mukamel, S.; Jortner, J. Energy gap law for vibrational relaxation of a molecule in a dense medium. J. Chem. Phys. 1975, 63, 200–207.
- 41 Englman, R.; Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970, 18, 145–164.
- 42 Caspar, J. V.; Meyer, T. J. Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 1983, 87, 952–957.
- 43 Ullbrich, S.; Benduhn, J.; Jia, X.; Nikolis, V. C.; Tvingstedt, K.; Piersimoni, F.; Roland, S.; Liu, Y.; Wu, J.; Fischer, A.; Neher, D.; Reineke, S.; Spoltore, D.; Vandewal, K. Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nat. Mater. 2019, 18, 459–464.
- 44 Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519.
- 45 Xie, Y.; Liu, W.; Deng, W.; Wu, H.; Wang, W.; Si, Y.; Zhan, X.; Gao, C.; Chen, X.-K.; Wu, H.; Peng, J.; Cao, Y. Bright short-wavelength infrared organic light-emitting devices. Nat. Photonics 2022, 16, 752–761.
- 46 Orlandi, G.; Siebrand, W. Electronic propensity rule for radiationless transitions. Chem. Phys. Lett. 1981, 80, 399–403.
- 47 Zhang, Y.; Liu, H.; Weng, Y. Theoretical and Experimental Investigation of the Electronic Propensity Rule: A Linear Relationship between Radiative and Nonradiative Decay Rates of Molecules. J. Phys. Chem. Lett. 2023, 14, 4151–4157.
- 48 Guo, Y.; Han, G.; Yi, Y. The Intrinsic Role of the Fusion Mode and Electron-Deficient Core in Fused-Ring Electron Acceptors for Organic Photovoltaics. Angew. Chem. Int. Ed. 2022, 61, e202205975.
- 49 Shi, Y.; Zhu, L.; Yan, Y.; Xie, M.; Liang, G.; Qiao, J.; Zhang, J.; Hao, X.; Lu, K.; Wei, Z. Small Energetic Disorder Enables Ultralow Energy Losses in Non-Fullerene Organic Solar Cells. Adv. Energy Mater. 2023, 13, 2300458.
- 50 Liu, M.; Han, X.; Chen, H.; Peng, Q.; Huang, H. A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors. Nat. Commun. 2023, 14, 2500.
- 51 Zhang, Z.; Li, Y.; Cai, G.; Zhang, Y.; Lu, X.; Lin, Y. Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells. J. Am. Chem. Soc. 2020, 142, 18741–18745.
- 52 Wei, Y.-C.; Wang, S. F.; Hu, Y.; Liao, L.-S.; Chen, D.-G.; Chang, K.-H.; Wang, C.-W.; Liu, S.-H.; Chan, W.-H.; Liao, J.-L.; Hung, W.-Y.; Wang, T.-H.; Chen, P.-T.; Hsu, H.-F.; Chi, Y.; Chou, P.-T. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photonics 2020, 14, 570–577.
- 53 Shi, Y.; Chang, Y.; Lu, K.; Chen, Z.; Zhang, J.; Yan, Y.; Qiu, D.; Liu, Y.; Adil, M. A.; Ma, W.; Hao, X.; Zhu, L.; Wei, Z. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat. Commun. 2022, 13, 3256.
- 54 Zhu, Y.; Zhang, Z.; Si, W.; Sun, Q.; Cai, G.; Li, Y.; Jia, Y.; Lu, X.; Xu, W.; Zhang, S.; Lin, Y. Organic Photovoltaic Catalyst with Extended Exciton Diffusion for High-Performance Solar Hydrogen Evolution. J. Am. Chem. Soc. 2022, 144, 12747–12755.
- 55 Sun, Y.; Wang, L.; Guo, C.; Xiao, J.; Liu, C.; Chen, C.; Xia, W.; Gan, Z.; Cheng, J.; Zhou, J.; Chen, Z.; Zhou, J.; Liu, D.; Wang, T.; Li, W. π-Extended Nonfullerene Acceptor for Compressed Molecular Packing in Organic Solar Cells To Achieve over 20% Efficiency. J. Am. Chem. Soc. 2024, 146, 12011–12019.
- 56 Oleson, A.; Zhu, T.; Dunn, I. S.; Bialas, D.; Bai, Y.; Zhang, W.; Dai, M.; Reichman, D. R.; Tempelaar, R.; Huang, L.; Spano, F. C. Perylene Diimide-Based Hj- and hJ-Aggregates: The Prospect of Exciton Band Shape Engineering in Organic Materials. J. Phys. Chem. C 2019, 123, 20567–20578.
- 57 Hestand, N. J.; Spano, F. C. Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chem. Rev. 2018, 118, 7069–7163.
- 58 Wang, J.; Chen, H.; Xu, X.; Ma, Z.; Zhang, Z.; Li, C.; Yang, Y.; Wang, J.; Zhao, Y.; Zhang, M.; Wan, X.; Lu, Y.; Chen, Y. An acceptor with an asymmetric and extended conjugated backbone for high-efficiency organic solar cells with low nonradiative energy loss. J. Mater. Chem. A 2022, 10, 16714–16721.
- 59
Si, X.; Huang, Y.; Shi, W.; Wang, R.; Ma, K.; Zhang, Y.; Wu, S.; Yao, Z.; Li, C.; Wan, X.; Chen, Y. Achieving Organic Solar Cells with an Efficiency of 18.80% by Reducing Nonradiative Energy Loss and Tuning Active Layer Morphology. Adv. Funct. Mater. 2023, 33, 230641.
10.1002/adfm.202306471 Google Scholar
- 60 Jiang, Y.; Li, Y.; Liu, F.; Wang, W.; Su, W.; Liu, W.; Liu, S.; Zhang, W.; Hou, J.; Xu, S.; Yi, Y.; Zhu, X. Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion. Nat. Commun. 2023, 14, 5079.
- 61 Zhang, H.; Zhao, Z.; Turley, A. T.; Wang, L.; McGonigal, P. R.; Tu, Y.; Li, Y.; Wang, Z.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregate Science: From Structures to Properties. Adv. Mater. 2020, 32, e2001457.
- 62 Zuo, L.; Jo, S. B.; Li, Y.; Meng, Y.; Stoddard, R. J.; Liu, Y.; Lin, F.; Shi, X.; Liu, F.; Hillhouse, H. W.; Ginger, D. S.; Chen, H.; Jen, A. K. Y. Dilution effect for highly efficient multiple-component organic solar cells. Nat. Nano. 2022, 17, 53–60.
- 63 Cheng, C.; Wong, S.; LeCroy, G.; Schneider, S.; Gomez, E.; Toney, M. F.; Salleo, A. Linking Phase Behavior to Performance Parameters in Non-Fullerene Acceptor Solar Cells. Adv. Energy Mater. 2023, 13, 2204297.
- 64 Benduhn, J.; Tvingstedt, K.; Piersimoni, F.; Ullbrich, S.; Fan, Y.; Tropiano, M.; McGarry, K. A.; Zeika, O.; Riede, M. K.; Douglas, C. J.; Barlow, S.; Marder, S. R.; Neher, D.; Spoltore, D.; Vandewal, K. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2017, 2, 17053.
- 65
Chen, X. K.; Brédas, J. L. Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations. Adv. Energy Mater. 2017, 8, 1702227.
10.1002/aenm.201702227 Google Scholar
- 66 Zhu, Y.; He, D.; Wang, C.; Han, X.; Liu, Z.; Wang, K.; Zhang, J.; Shen, X.; Li, J.; Lin, Y.; Wang, C.; He, Y.; Zhao, F. Suppressing Exciton-Vibration Coupling to Prolong Exciton Lifetime of Nonfullerene Acceptors Enables High-Efficiency Organic Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202316227.
- 67 Closs, G. L.; Miller, J. R. Intramolecular Long-Distance Electron Transfer in Organic Molecules. Science 1988, 240, 440–447.
- 68 Oevering, H.; Verhoeven, J. W.; Paddon-Row, M. N.; Warman, J. M. Charge-transfer absorption and emission resulting from long-range through-bond interaction; exploring the relation between electronic coupling andelectron-transfer in bridged donor-acceptor systems. Tetrahedron 1989, 45, 4751–4766.
- 69 Oliver, A. M.; Paddon-Row, M. N.; Kroon, J.; Verhoeven, J. W. Orbital symmetry effects on intramolecular charge recombination. Chem. Phys. Lett. 1992, 191, 371–377.
- 70 Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photonics 2020, 14, 300–305.
- 71 Fu, J.; Fong, P. W. K.; Liu, H.; Huang, C.-S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C. M.; Yang, Y.; Li, G. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760.
- 72 Wang, J.; Jiang, X.; Wu, H.; Feng, G.; Wu, H.; Li, J.; Yi, Y.; Feng, X.; Ma, Z.; Li, W.; Vandewal, K.; Tang, Z. Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat. Commun. 2021, 12, 6679.
- 73 Qian, D.; Zheng, Z.; Yao, H.; Tress, W.; Hopper, T. R.; Chen, S.; Li, S.; Liu, J.; Chen, S.; Zhang, J.; Liu, X.-K.; Gao, B.; Ouyang, L.; Jin, Y.; Pozina, G.; Buyanova, I. A.; Chen, W. M.; Inganäs, O.; Coropceanu, V.; Bredas, J.-L.; Yan, H.; Hou, J.; Zhang, F.; Bakulin, A. A.; Gao, F. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 2018, 17, 703–709.
- 74 Zhou, J.; Li, D.; Wang, L.; Zhang, X.; Deng, N.; Guo, C.; Chen, C.; Gan, Z.; Liu, C.; Sun, W.; Liu, D.; Li, W.; Li, Z.; Wang, K.; Wang, T. Bicontinuous donor and acceptor fibril networks enable 19.2% efficiency pseudo-bulk heterojunction organic solar cells. Interdiscip. Mater. 2023, 2, 866–875.
- 75 Eisner, F. D.; Azzouzi, M.; Fei, Z.; Hou, X.; Anthopoulos, T. D.; Dennis, T. J. S.; Heeney, M.; Nelson, J. Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. J. Am. Chem. Soc. 2019, 141, 6362–6374.
- 76 Chen, X.-K.; Qian, D.; Wang, Y.; Kirchartz, T.; Tress, W.; Yao, H.; Yuan, J.; Hülsbeck, M.; Zhang, M.; Zou, Y.; Sun, Y.; Li, Y.; Hou, J.; Inganäs, O.; Coropceanu, V.; Bredas, J.-L.; Gao, F. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 2021, 6, 799–806.
- 77 Zhu, C.; Yuan, J.; Cai, F.; Meng, L.; Zhang, H.; Chen, H.; Li, J.; Qiu, B.; Peng, H.; Chen, S.; Hu, Y.; Yang, C.; Gao, F.; Zou, Y.; Li, Y. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energ. Environ. Sci. 2020, 13, 2459–2466.
- 78 Wang, J.; Chepelianskii, A.; Gao, F.; Greenham, N. C. Control of exciton spin statistics through spin polarization in organic optoelectronic devices. Nat. Commun. 2012, 3, 1191.
- 79 Gillett, A. J.; Privitera, A.; Dilmurat, R.; Karki, A.; Qian, D.; Pershin, A.; Londi, G.; Myers, W. K.; Lee, J.; Yuan, J.; Ko, S.-J.; Riede, M. K.; Gao, F.; Bazan, G. C.; Rao, A.; Nguyen, T.-Q.; Beljonne, D.; Friend, R. H. The role of charge recombination to triplet excitons in organic solar cells. Nature 2021, 597, 666–671.
- 80 Xu, Z.; Tang, B. Z.; Wang, Y.; Ma, D. Recent advances in high performance blue organic light-emitting diodes based on fluorescence emitters. J. Mater. Chem. C 2020, 8, 2614–2642.
- 81 Luo, Y.; Aziz, H. Correlation Between Triplet–Triplet Annihilation and Electroluminescence Efficiency in Doped Fluorescent Organic Light-Emitting Devices. Adv. Funct. Mater. 2010, 20, 1285–1293.
- 82 Hart, L. J. F.; Grüne, J.; Liu, W.; Lau, T. k.; Luke, J.; Chin, Y. C.; Jiang, X.; Zhang, H.; Sowood, D. J. C.; Unson, D. M. L.; Kim, J. S.; Lu, X.; Zou, Y.; Gao, F.; Sperlich, A.; Dyakonov, V.; Yuan, J.; Gillett, A. J. Understanding the Role of Triplet-Triplet Annihilation in Non-Fullerene Acceptor Organic Solar Cells. Adv. Energy Mater. 2023, 13, 2301357.