Twisted Phosphors that Violate Kasha's Exciton Model in Organic Systems
Boyi Fu
School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205 China
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorGuangming Wang
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorJiuyang Li
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorJunbo Li
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorXun Li
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorXiaoya Zhao
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorShuhui Ding
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Guoping Yan
School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Qianqian Yan
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Kaka Zhang
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorBoyi Fu
School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205 China
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorGuangming Wang
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorJiuyang Li
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorJunbo Li
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorXun Li
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorXiaoya Zhao
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorShuhui Ding
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Guoping Yan
School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Qianqian Yan
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Kaka Zhang
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Kasha's exciton model proposes that T1 energy levels of organic compounds are insensitive to molecular aggregation and microenvironment change because of negligible small transition dipole moments of T1 states. This model holds true in most organic systems till now. Here we report the fabrication of twisted organic phosphors with intramolecular charge transfer characters and flexible molecular structures. When doped into different organic matrices, the twisted phosphor adopts different conformation, exhibits distinct phosphorescence colors and T1 energy levels, which violates Kasha's exciton model in organic system. Given that the change of phosphorescence colors and maxima can be readily distinguished by human eyes and conventional instrument, the twisted phosphors would be exploited as a new type of molecular probe, which would exhibit potential application in optical sensing and stimuli-responsive systems.
Supporting Information
Filename | Description |
---|---|
cjoc202300705-sup-0001-Supinfo.pdfPDF document, 7.2 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Yam, V. W.; Au, V. K.; Leung, S. Y. Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem. Rev. 2015, 115, 7589–7728.
- 2 Kabe, R.; Adachi, C. Organic Long Persistent Luminescence. Nature 2017, 550, 384–387.
- 3 Zhao, W.; He, Z.; Tang, B. Z. Room-Temperature Phosphorescence from Organic Aggregates. Nat. Rev. Mater. 2020, 5, 869–885.
- 4 Gan, N.; Shi, H.; An, Z.; Huang, W. Recent Advances in Polymer-Based Metal-Free Room-Temperature Phosphorescent Materials. Adv. Funct. Mater. 2018, 28, 1802657.
- 5 Ma, X.; Wang, J.; Tian, H. Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence. Acc. Chem. Res. 2019, 52, 738–748.
- 6 Hirata, S. Recent Advances in Materials with Room-Temperature Phosphorescence: Photophysics for Triplet Exciton Stabilization. Adv. Opt. Mater. 2017, 5, 1700116.
- 7Kenry; Chen, C.; Liu, B. Enhancing the Performance of Pure Organic Room-Temperature Phosphorescent Luminophores. Nat. Commun. 2019, 10, 2111.
- 8 Li, Q.; Li, Z. Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials. Acc. Chem. Res. 2020, 53, 962–973.
- 9 Evans, R. C.; Dougla, P.; Winsco, C. J. Coordination Complexes Exhibiting Room-Temperature Phosphorescence: Evaluation of Their Suitability as Triplet Emitters in Organic Light Emitting Diodes Coord. Chem. Rev. 2006, 250, 2093–2126.
- 10 Yan, Y.; Zhang, J.; Ren, L.; Tang, C. Metal-Containing and Related Polymers for Biomedical Applications. Chem. Soc. Rev. 2016, 45, 5232.
- 11 Yam, V. W.; Tang, R. P.-L.; Wong, K. M.-C.; Cheung, K.-K. Synthesis, Luminescence, Electrochemistry, and Ion-Binding Studies of Platinum(II) Terpyridyl Acetylide Complexes. Organometallics 2001, 20, 4476–4482.
- 12 Yam, V. W.-W.; Wong, K. M.-C.; Zhu, N. Solvent-Induced Aggregation through Metal···Metal/π···π Interactions: Large Solvatochromism of Luminescent Organoplatinum (II) Terpyridyl Complexes. J. Am. Chem. Soc. 2002, 124, 6506–6507.
- 13 Wong, K. M.-C.; Yam, V. W.-W. Self-Assembly of Luminescent Alkynylplatinum (II) Terpyridyl Complexes: Modulation of Photophysical Properties through Aggregation Behavior. Acc. Chem. Res. 2011, 44, 424–434.
- 14 Zhang, K.; Yeung, M. C.-L.; Leung, S. Y.-L.; Yam, V. W.-W. Energy Landscape in Supramolecular Coassembly of Platinum(II) Complexes and Polymers: Morphological Diversity, Transformation, and Dilution Stability of Nanostructures. J. Am. Chem. Soc. 2018, 140, 9594–9605.
- 15 Zhang, K.; Yeung, M. C.-L.; Leung, S. Y.-L.; Yam, V. W.-W. Living Supramolecular Polymerization Achieved by Collaborative Assembly of Platinum(II) Complexes and Block Copolymers. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 11844–11849.
- 16 Zhang, K.; Yeung, M. C.-L.; Leung, S. Y.-L.; Yam, V. W.-W. Manipulation of Nanostructures in the Co-assembly of Platinum (II) Complexes and Block Copolymers. Chem 2017, 2, 825–839.
- 17 Yu, C.; Wong, K. M.-C.; Chan, K. H.-Y.; Yam, V. W.-W. Polymer-Induced Self-Assembly of Alkynylplatinum(II) Terpyridyl Complexes by Metal·Metal/π···π Interactions. Angew. Chem. Int. Ed. 2005, 44, 791–794.
- 18 Wan, Q.; Xiao, X.-S.; To, W.-P.; Lu, W.; Chen, Y.; Low, K.-H.; Che, C.-M. Counteranion and Solvent-Mediated Chirality Transfer in the Supramolecular Polymerization of Luminescent Platinum(II) Complexes. Angew. Chem. Int. Ed. 2018, 57, 17189–17193.
- 19 Tang, M.-C.; Chan, M.-Y.; Yam, V. W.-W. Molecular Design of Luminescent Gold (III) Emitters as Thermally Evaporable and Solution-Processable Organic Light-Emitting Device (OLED) Materials. Chem. Rev. 2021, 121, 7249–7279.
- 20 Law, A. S.-Y.; Lee, L. C.-C.; Lo, K. K.-W.; Yam, V. W.-W. Aggregation and Supramolecular Self-Assembly of Low-Energy Red Luminescent Alkynylplatinum(II) Complexes for RNA Detection, Nucleolus Imaging, and RNA Synthesis Inhibitor Screening. J. Am. Chem. Soc. 2021, 143, 5396–5405.
- 21 Zhang, T.; Ma, X.; Wu, H.; Zhu, L.; Zhao, Y.; Tian, H. Molecular engineering for Metal-Free Amorphous Materials with Room-Temperature Phosphorescence. Angew. Chem. Int. Ed. 2020, 59, 11206–11216.
- 22 Jia, W.; Wang, Q.; Shi, H.; Huang, W. Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Chem. Eur. J. 2019, 26, 4437–4448.
- 23 Guo, S.; Dai, W.; Chen, X.; Lei, Y.; Shi, J.; Tong, B.; Cai, Z.; Dong, Y. P. Recent Progress in Pure Organic Room Temperature Phosphorescence of Small Molecular Host–Guest Systems. ACS Mater. 2021, 3, 379–397.
- 24 Hirata, S. Molecular Physics of Persistent Room Temperature Phosphorescence and Long-Lived Triplet Excitons. Appl. Phys. Rev. 2022, 9, 0113004.
- 25 Gao, H.; Ma, X. Recent Progress on Pure Organic Room Temperature Phosphorescent Polymers. Aggregate 2021, 2, e38.
- 26 Si, Y.; Zhao, Y.; Dai, W.; Cui, S.; Sun, P.; Shi, J.; Tong, B.; Cai, Z. Organic Host-Guest Materials with Bright Red Room-Temperature Phosphorescence for Persistent Bioimaging. Chin. J. Chem. 2023, 41, 1575–1582.
- 27 An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence. Nat. Mater. 2015, 14, 685–690.
- 28 Zhang, G.; Palmer, G. M.; Dewhirst, M. W.; Fraser, C. L. A Dual-Emissive-Materials Design Concept Enables Tumour Hypoxia Imaging. Nat. Mater. 2009, 8, 747–751.
- 29 Bolton, O.; Lee, K.; Kim, H.-J.; Lin, K. Y.; Kim, J. Activating Efficient Phosphorescence From purely Organic Materials by Crystal Design. Nat. Chem. 2011, 3, 205–210.
- 30 Yan, X.; Peng, H.; Xiang, Y.; Wang, J.; Yu, L.; Tao, Y.; Li, H.; Huang, W.; Chen, R. Recent Advances on Host–Guest Material Systems toward Organic Room Temperature Phosphorescence. Small 2022, 18, 2104073.
- 31 Gmelch, M.; Thomas, H.; Fries, F.; Reineke, S. Programmable Transparent Organic Luminescent Tags. Sci. Adv. 2019, 5, eaau7310.
- 32 Zhen, X.; Tao, Y.; An, Z. F.; Chen, P.; Xu, C. J.; Chen, R. F.; Huang, W.; Pu, K. Y. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. Adv. Mater. 2017, 29, 1606665.
- 33 Wang, Y.; Gao, H.; Yang, J.; Fang, M.; Ding, D.; Tang, B. Z.; Li, Z. High Performance of Simple Organic Phosphorescence Host–Guest Materials and Their Application in Time-Resolved Bioimaging. Adv. Mater. 2021, 33, 2007811.
- 34 Wang, X.-F.; Xiao, H.; Chen, P.-Z.; Yang, Q.-Z.; Chen, B.; Tung, C.-H.; Chen, Y.-Z.; Wu, L.-Z. Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. J. Am. Chem. Soc. 2019, 141, 5045–5050.
- 35 Lewis, G. N.; Kasha, M. Phosphorescence and the Triplet State J. Am. Chem. Soc. 1944, 66, 2100–2116.
- 36
Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. Pure Appl. Chem. 1965, 11, 37.
10.1351/pac196511030371 Google Scholar
- 37 El-Sayed, M. A. Triplet State. Its Radiative and Nonradiative Properties. Acc. Chem. Res. 1968, 1, 8–16.
- 38 Zhang, X.; Du, L.; Zhao, W.; Zhao, Z.; Xiong, Y.; He, X.; Gao, P.; Alam, P.; Wang, C.; Li, Z.; Leng, J.; Liu, J.; Zhou, C.; Lam, J. W. Y.; Phillips, D. L.; Zhang, G.; Tang, B. Z. Ultralong UV/mechano-Excited Room Temperature Phosphorescence from Purely Organic Cluster Excitons. Nat. Commun. 2019, 10, 5161.
- 39 Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring Intermolecular Interactions for Efficient Room-Temperature Phosphorescence from Purely Organic Materials in Amorphous Polymer Matrices. Angew. Chem. Int. Ed. 2014, 53, 1117.
- 40 Xu, S.; Wang, W.; Li, H.; Zhang, J.; Chen, R.; Wang, S.; Zheng, C.; Xing, G.; Song, C.; Huang, W. Design of Highly Efficient Deep-Blue Organic Afterglow through Guest Sensitization and Matrices Rigidification. Nat. Commun. 2020, 11, 4802.
- 41 Notsuka, N.; Kabe, R.; Goushi, K.; Adachi, C. Confinement of Long-Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Adv. Funct. Mater. 2017, 27, 1703902.
- 42 Xie, Z.; Zhang, X.; Wang, H.; Huang, C.; Sun, H.; Dong, M.; Ji, L.; An, Z.; Yu, T.; Huang, W. Wide-Range Lifetime-Tunable and Responsive Ultralong Organic Phosphorescent Multi-Host/Guest System. Nat. Commun. 2021, 12, 3522.
- 43 Lei, Y.; Yang, J.; Dai, W.; Lan, Y.; Yang, J.; Zheng, X.; Shi, J.; Tong, B.; Cai, Z.; Dong, Y. Efficient and Organic Host–Guest Room-Temperature Phosphorescence: Tunable triplet–Singlet Crossing and Theoretical Calculations for Molecular Packing. Chem. Sci. 2021, 12, 6518–6525.
- 44 Su, Y.; Phua, S. Z. F.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Lim, W. Q.; Ong, W. K.; Yang, C.; Zhao, Y. Ultralong Room Temperature Phosphorescence from Amorphous Organic Materials Toward Confidential Information Encryption and Decryption Sci. Adv. 2018, 4, eaas9732.
- 45 Mao, Z.; Yang, Z.; Mu, Y.; Zhang, Y.; Wang, Y.-F.; Chi, Z.; Lo, C. C.; Liu, S.; Lien A.; Xu, J. Total Synthesis and Structural Revision of (+)-Uprolide G Acetate. Angew. Chem. Int. Ed. 2015, 54, 627–632.
- 46 Zhang, J.; Li, J.; Li, X.; Yuan, S.; Sun, Y.; Zou, Y.; Pan, Y.; Zhang, K. Boosting Organic Afterglow Efficiency via Triplet–Triplet Annihilation and Thermally-Activated Delayed Fluorescence. J. Mater. Chem. C 2022, 10, 4795–4804.
- 47 Li, X.; Wang, G. M.; Li, J.; Sun, Y.; Deng, X. J.; Zhang, K. K. Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. ACS Appl. Mater. Interfaces 2022, 14, 1587–1600.
- 48 Sun, Y.; Liu, J.; Li, J.; Li, X.; Wang, X.; Wang, G.; Zhang, K. Manipulation of Triplet Excited States for Long-Lived and Efficient Organic Afterglow. Adv. Opt. Mater. 2021, 9, 2101909.
- 49 Yang, T. Li, Y.; Zhao, Z.; Yuan, W. Clustering-Triggered Phosphorescence of Nonconventional Luminophores. Sci. China Chem. 2023, 66, 367–387.
- 50 Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W.; Zhang, Y. Clustering-Triggered Emission of Nonconjugated Polyacrylonitrile. Small 2016, 12, 6586–6592.
- 51 Lin, X.; Wang, J.; Ding, B.; Ma, X.; Tian, H. Tunable-Emission Amorphous Room-Temperature Phosphorescent Polymers Based on Thermoreversible Dynamic Covalent Bonds. Angew. Chem. Int. Ed. 2021, 60, 3459–3463.
- 52 Chen, W.-G.; Chen, Z.-J.; Zhang, L.; Wang, B.; Lin, Z.-Z.; Cao, R.; Wang, W.-R.; Chen, Y.; Wang, Y. Reversible, Photoresponsive, Dynamic Wide-Range Emission Color from Polymer-Matrixed Naphthalene Diimide Single-Luminogen. Chem. Eng. J. 2022, 432, 134411.
- 53 Su, Y.; Zhang, Y.; Wang, Z.; Gao, W.; Jia, P.; Zhang, D.; Yang, C.; Li, Y.; Zhao, Y. Excitation-Dependent Long-Life Luminescent Polymeric Systems under Ambient Conditions. Angew. Chem. Int. Ed. 2020, 59, 9967–9971.
- 54 Wei, P.; Zhang, X.; Liu, J.; Shan, G.; Zhang, H.; Qi, J.; Zhao, W.; Sung, H. H.-Y.; Williams, I. D.; Lam, J. W. Y.; Tang, B. Z. New Wine in Old Bottles: Prolonging Room-Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angew. Chem. Int. Ed. 2020, 59, 9293–9298.
- 55 Yang, J.; Fang, M. M.; Li, Z. Stimulus-Responsive Room Temperature Phosphorescence Materials: Internal Mechanism, Design Strategy, and Potential Application. Acc. Mater. Res. 2021, 2, 644–654.
- 56
Mao, Z.; Yang, Z.; Mu, Y.; Zhang, Y.; Wang, Y.; Chi, Z.; Lo, C.; Liu, S.; Lien, A.; Xu, J. Linearly Tunable Emission Colors Obtained from a Fluorescent–Phosphorescent Dual-Emission Compound by Mechanical Stimuli. Angew. Chem. Int. Ed. 2015, 127, 6368–6371.
10.1002/ange.201500426 Google Scholar
- 57 Katsurada, Y.; Hirata, S.; Totani, K.; Watanabe, T.; Vacha, M. Ptoreversible on-off Recording of Persistent Room-Temperature Phosphorescence. Adv. Opt. Mater. 2015, 3, 1726–1737.
- 58 Mieno, H.; Kabe, R.; Adachi, C. Reversible Control of Triplet Dynamics in Metal-Organic Framework-Entrapped Organic Emitters via External Gases. Commun. Chem. 2018, 1, 27.
- 59 Huang, L.; Chen, B.; Zhang, X.; Trindle, C.; Liao, F.; Wang, Y.; Miao, H.; Luo, Y.; Zhang, G. Proton-Activated “Off–On” Room-Temperature Phosphorescence from Purely Organic Thioethers. Angew. Chem. Int. Ed. 2018, 130, 16278–1628.
- 60 Huang, L.; Liu, L.; Li, X.; Hu, H.; Chen, M.; Yang, Q.; Ma, Z. Y.; Jia, X. R. Crystal-State Photochromism and Dual-Mode Mechanochromism of an Organic Molecule with Fluorescence, Room-Temperature Phosphorescence, and Delayed Fluorescence. Angew. Chem. Int. Ed. 2019, 58, 16445–16450.
- 61 Cao, P.; Chen, Q.; Wu, P. Aqueous Room-Temperature Phosphorescence from Assembled Phosphors for Analytical Detection. Chin. J. Chem. 2023, 41, 979–990.
- 62 Ding, S. H.; Wang, X. P.; Wang, G. M.; Wu, M. J.; Li, J. B.; Zhao, X. Y.; Li, H. D.; Ren, S. X.; Zhang, K. K. A Twisted Phosphor: Breaking T1 Energy Conservation in Dopant-Matrix Organic Phosphorescence Systems. Adv. Opt. Mater. 2023, 11, 2202540.
- 63 Huang, R. J.; Ward, J. S.; Kukhta, N. A.; Avó, J.; Gibson, J.; Penfold, T.; Lima, J. C.; Batsanov, A. S.; Berberan-Santos, M. N.; Bryc, M. R.; Dias, F. B. The Influence of Molecular Conformation on The Photophysics of Organic Room Temperature Phosphorescent Luminophores. J. Mater. Chem. C 2018, 6, 9238–9247.
- 64
Gao, M.; Tian, Y.; Gong, Y.; Fang, M.; Yang, J.; Li, Z. The Effect of Molecular Conformations and Simulated “Self-Doping” in Phenothiazine Derivatives on Room-Temperature Phosphorescence. Angew. Chem. Int. Ed. 2023, 135, e202214908.
10.1002/ange.202214908 Google Scholar
- 65 Gao, M.; Tian, Y.; Yang, J.; Li, X.; Fang, M.; Li, Z. The Same Molecule but a Different Molecular Conformation Results in a Different Room Temperature Phosphorescence in Phenothiazine Derivatives. J. Mater. Chem. C 2021, 9, 15375–15380.
- 66 Wei, J.; Liu, C.; Duan, J.; Shao, A.; Li, J.; Li, J. G.; Gu, W.; Li, Z.; Liu, S.; Ma, Y.; Huang, W.; Zhao, Q. Conformation-Dependent Dynamic Organic Phosphorescence through Thermal Energy Driven Molecular Rotations. Nat. Commun. 2023, 14, 627.
- 67 Li, J.; Wang, X.; Zhao, X.; Chen, X.; Ding, S.; Wu, M.; Zhang, K. Cascade Synthesis of Luminescent Difluoroboron Diketonate Compounds for Room-Temperature Organic Afterglow Materials. Chin. J. Chem. 2022, 40, 2507–2515.
- 68 Yang, Z.; Xu, C.; Li, W.; Mao, Z.; Ge, X.; Huang, Q.; Deng, H.; Zhao, J.; Gu, F. L.; Zhang, Y.; Chi, Z. Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52% via Intramolecular Halogen Bonding. Angew. Chem. Int. Ed. 2020, 59, 17451–17455.
- 69 Wang, J.; Gu, X.; Ma, H.; Peng, Q.; Huang, X.; Zheng, X.; Sung, S. H. P.; Shan, G.; Lam, J. W. Y.; Shuai, Z.; Tang, B. Z. A Facile Strategy for Realizing Room Temperature Phosphorescence and Single Molecule White Light Emission. Nat. Commun. 2018, 9, 2963.
- 70 Ma, X.; Xu, C.; Wang, J.; Tian, H. Amorphous Pure Organic Polymers for Heavy-Atom-Free Efficient Room-Temperature Phosphorescence Emission. Angew. Chem. Int. Ed. 2018, 57, 10854–10858.
- 71 Gan, N.; Wang, X.; Ma, H.; Lv, A.; Wang, H.; Wang, Q.; Gu, M.; Cai, S.; Zhang, Y.; Fu, L.; Zhang, M.; Dong, C.; Yao, W.; Shi, H.; An, Z.; Huang, W. Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. Angew. Chem. Int. Ed. 2019, 58, 14140–14145.
- 72 Bian, L.; Shi, H.; Wang, X.; Ling, K.; Ma, H.; Li, M.; Cheng, Z.; Ma, C.; Cai, S.; Wu, Q.; Gan, N.; Xu, X.; An, Z.; Huang, W. Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. J. Am. Chem. Soc. 2018, 140, 10734–10739.
- 73 Wang, J.; Huang, Z.; Ma, X.; Tian, H. Visible-Light-Excited Room-Temperature Phosphorescence in Water by Cucurbit[8]uril-Mediated Supramolecular Assembly. Angew. Chem. Int. Ed. 2020, 59, 9928–9933.
- 74 Wei, P.; Zhang, X.; Liu, J.; Shan, G.; Zhang, H.; Qi, J.; Zhao, W.; Sung, H. H.-Y.; Williams, I. D.; Lam, D.; Lam, J. W. Y.; Tang, B. Z. New Wine in Old Bottles: Prolonging Room-Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angew. Chem. Int. Ed. 2020, 59, 9293–9298.
- 75 Ma, X.; Zhang, W.; Liu, Z.; Zhang, H.; Zhang, B.; Liu, Y. Supramolecular Pins with Ultralong Efficient Phosphorescence. Adv. Mater. 2021, 33, 2007476.
- 76 Zhao, W.; He, Z.; Tang, B. Z. Room-Temperature Phosphorescence from Organic Aggregates. Nat. Rev. Mater. 2020, 5, 869.
- 77 Li, J.; Wang, G.; Chen, X.; Li, X.; Wu, M.; Yuan, S.; Zou, Y.; Wang, X.; Zhang, K. Manipulation of Triplet Excited States in Two-Component Systems for High-Performance Organic Afterglow Materials. Chem. Eur. J. 2022, 28, e202200852.
- 78 Hirata, S.; Totani, K.; Zhang, J.; Yamashita., T.; Kaji, H.; Marder, R.; Watanabe, T.; Adachi, C. Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials under Ambient Conditions. Adv. Funct. Mater. 2013, 23, 3386–3397.
- 79 Wang, X.; Sun, Y.; Wang, G.; Li, J.; Li, X.; Zhang, K. TADF-Type Organic Afterglow. Angew. Chem. Int. Ed. 2021, 60, 17138–17147.
- 80 Li, J.; Li, X.; Wang, G.; Wang, X.; Wu, M.; Liu, J.; Zhang, K. A Direct Observation of Up-converted Room-Temperature Phosphorescence in an Anti-Kasha Dopant-matrix System. Nat. Commun. 2023, 14, 1987.
- 81 Chen, C.; Chi, Z.; Chong, K. C.; Batsanov, A. S.; Yang, Z.; Mao, Z.; Yang, Z.; Liu, B. Carbazole Isomers Induce Ultralong Organic Phosphorescence. Nat. Mater. 2021, 20, 175–180.
- 82 Lei, Y.; Dai, W.; Guan, J.; Guo, S.; Ren, F.; Zhou, Y.; Shi, J.; Tong, B.; Cai, Z.; Zheng, J.; Dong, Y. Wide-Range Color-Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angew. Chem. Int. Ed. 2020, 59, 16054–16060.
- 83 Lower, S. K.; El-Sayed, M. A. The Triplet State and Molecular Electronic Processes in Organic Molecules. Chem. Rev. 1966, 66, 199–241.
- 84 Pan, Y.; Li, J.; Wang, X.; Sun, Y.; Li, J.; Wang, B.; Zhang, K. Highly Efficient TADF-Type Organic Afterglow of Long Emission Wavelengths. Adv. Funct. Mater. 2022, 32, 2110207.
- 85 Kuila, S.; George, S. J. Phosphorescence Energy Transfer: Ambient Afterglow Fluorescence from Water-Processable and Purely Organic Dyes via Delayed Sensitization. Angew. Chem. Int. Ed. 2020, 59, 9393.
- 86 Dang, Q.; Jiang, Y.; Wang, J.; Wang, J.; Zhang, Q.; Zhang, M.; Luo, S.; Xie, Y.; Pu, K.; Li, Q.; Li, Z. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents. Adv. Mater. 2020, 32, 2006752.