Hydrogen Bonds in Perovskite for Efficient and Stable Photovoltaic†
Tian-yun Wang
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorYang-yang Hao
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorCorresponding Author
Ming-zhe Zhu
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guo-rui Cao
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorZhong-min Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorTian-yun Wang
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorYang-yang Hao
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorCorresponding Author
Ming-zhe Zhu
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guo-rui Cao
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorZhong-min Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorDedicated to the Special Issue of Perovskite.
Comprehensive Summary
Owing to their distinctive optical and physical properties, organic-inorganic hybrid perovskite materials have gained significant attention in the field of electronic devices, especially solar cells. The achievement of high-performance solar cells hinges upon the utilization of top-notch perovskite thin films. Nevertheless, the fabrication process involving solutions and the polycrystalline nature of perovskite result in the emergence of numerous defects within the perovskite films, consequently exerting a deleterious influence on the overall performance and stability of the devices. Improving the performance and stability of perovskite solar cells by additive engineering to suppress/passivate defects is a viable approach, which involves hydrogen bond interactions in these device engineering processes. This review explores the intrinsic hydrogen bonds in methylammonium and formamidium lead triiodide, while also considering cation rotations, phase transitions, and stability. Moreover, the review classifies additives into distinct categories, including organic small molecules, polymers, nanodots, classical salts, ionic liquids, and molten salts. The various forms and characterization techniques of hydrogen bonds are discussed, as well as their potential synergistic effects in conjunction with other chemical interactions. Furthermore, this review offers insights into the potential utilization of hydrogen bonds to further enhance the performance and stability of devices.
Key Scientists
In 2009, Tsutomu Miyasaka et al. prepared the first perovskite solar cell, which kicked off the research on perovskite light-absorbing materials. However, the use of liquid electrolytes led to device instability. The transition to all-solid-state perovskite solar cells was realized by Nam-Gyu Park's team in 2012, which was the beginning of high-efficiency perovskite solar cells. Subsequently, a number of scientists have innovated the preparation ground process. Methods such as two-step deposition by Michael Grätzel in 2013 and anti-solvent extraction by Sang II Seok's team in 2014 were instrumental in advancing the development of perovskite. Liyuan Han's team then increased the cell's working area to 1 cm2 without compromising performance, making it possible to compare the performance metrics of perovskite solar cells with those of other types of solar cells on the same scale. Recently, You's team and Pan's team kept updating the world record by obtaining certified efficiencies of 25.6% and 25.8% in 2022 and 2023, respectively.
References
- 1 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050−6051.
- 2(a) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591; (b) Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Ashräful, M.; Han, L. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944-948.
- 3 Zhou, Y.; Herz, L. M.; Jen, A. K-Y.; Saliba, M. Advances and Challenges in Understanding the Microscopic Structure-Property Performance Relationship in Perovskite Solar Cells. Nat Energy 2022, 7, 794−807.
- 4NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html (Last accessed: August 8, 2023).
- 5 Szabó, G.; Park, N.-G.; De Angelis, F.; Kamat, P. V. Are Perovskite Solar Cells Reaching the Efficiency and Voltage Limits? ACS Energy Lett. 2023, 8, 3829−3831.
- 6 Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510−519.
- 7 Rühle, S. Tabulated Values of the Shockley-Queisser Limit for Single Junction Solar Cells. Sol. Energy 2016, 130, 139−147.
- 8 Garrote-Márquez, A.; Lodeiro, L.; Suresh, R.; Cruz Hernández, N.; Grau-Crespo, R.; Menéndez-Proupin, E. Hydrogen Bonds in Lead Halide Perovskites: Insights from Ab Initio Molecular Dynamics. J. Phys. Chem. C 2023, 127, 15901−15910.
- 9 Pandech, N.; Kongnok, T.; Palakawong, N.; Limpijumnong, S.; Lambrecht, W. R. L.; Jungthawan, S. Effects of the van der Waals Interactions on Structural and Electronic Properties of CH3NH3(Pb,Sn)(I,Br,Cl)3 Halide Perovskites. ACS Omega 2020, 5, 25723−25732.
- 10 Liu, K.; Rafique, S.; Musolino, S. F.; Cai, Z.; Liu, F.; Li, X.; Yuan, Y.; Bao, Q.; Yang, Y.; Chu, J.; Peng, X.; Nie, C.; Yuan, W.; Zhang, S.; Wang, J.; Pan, Y.; Zhang, H.; Cai, X.; Shi, Z.; Li, C.; Zhan, Y. Covalent Bonding Strategy to Enable Non-Volatile Organic Cation Perovskite for Highly Stable and Efficient Solar Cells. Joule 2023, 7, 1033−1050.
- 11 Metrangolo, P.; Canil, L.; Abate, A.; Terraneo, G.; Cavallo, G. Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion. Angew. Chem. Int. Ed. 2022, 61, e202114793.
- 12 Yan, L.; Gloor, C. J.; Moran, A. M.; You, W. Non-Covalent Interactions Involving π Effect between Organic Cations in Low-Dimensional Organic/Inorganic Hybrid Perovskites. Appl. Phys. Lett. 2023, 122, 240501.
- 13(a) Liu, Y.; Gao, Y.; Lu, M.; Shi, Z.; Yu, W. W.; Hu, J.; Bai, X.; Zhang, Y. Ionic Additive Engineering for Stable Planar Perovskite Solar Cells with Efficiency >22%. Chem. Eng. J. 2021, 426, 130841; (b) Xu, Y.; Guo, X.; Lin, Z.; Wang, Q.; Su, J.; Zhang, J.; Hao, Y.; Yang, K.; Chang, J. Perovskite Films Regulation via Hydrogen-Bonded Polymer Network for Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202306229; (c) Faheem, M. B.; Khan, B.; Feng, C.; Subhani, W. S.; Mabrouk, S.; Sayyad, M. H.; Yildiz, A.; Zhang, W.-H.; Qiao, Q. Van der Waals Epitaxial Growth for High-Performance Organic-Free Perovskite Solar Cell: Experimental and Theoretical Insights. Adv. Mater. Interfaces 2022, 9, 2200421.
- 14 Svane, K. L.; Forse, A. C.; Grey, C. P.; Kieslich, G.; Cheetham, A. K.; Walsh, A.; Butler, K. P. How Strong is the Hydrogen Bond in Hybrid Perovskites? J. Phys. Chem. Lett. 2017, 8, 6154−6159.
- 15 Heyns, A. M.; Hirsch, K. R.; Holzapfel, W. B. The Effect of Pressure on the Raman Spectrum of NH4I. J. Chem. Phys. 1980, 73, 105−119.
- 16 Thanthiriwatte, K. S.; Hohenstein, E. G.; Burns, L. A.; David Sherrill, C. Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions. J. Chem. Theory Comput. 2011, 7, 88−96.
- 17 Murray, J. S.; Politzer, P. Hydrogen Bonding: A Coulombic σ-Hole Interaction. J. Indian Inst. Sci. 2020, 100, 21−30.
- 18 Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41, 48−76.
- 19 Vladilo, G.; Hassanali, A. Hydrogen Bonds and Life in the Universe. Life 2018, 8, 1.
- 20 Schiøtt, B.; Iversen, B. B.; Madsen, G. K. H.; Larsen, F. K.; Bruice, T. C. On the Electronic Nature of Low-Barrier Hydrogen Bonds in Enzymatic Reactions. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 12799−12802.
- 21 Glaser, T.; Müller, C.; Sendner, M.; Krekeler, C.; Semonin, O. E.; Hull, T. D.; Yaffe, O.; Owen, J. S.; Kowalsky, W.; Pucci, A.; Lovrinčić, R. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites. J. Phys. Chem. Lett. 2015, 6, 2913−2918.
- 22 Wasylishen, R. E.; Knop, O.; Macdonald, J. B. Cation Rotation in Methylammonium Lead Halides. Solid State Commun. 1985, 56, 581−582.
- 23(a) Xie, L.-Q.; Zhang, T.-Y.; Chen, L.; Guo, N.; Wang, Y.; Liu, G.-K.; Wang, J.-R.; Zhou, J.-Z.; Yan, J.-W.; Zhao, Y.-X.; Mao, B.-W.; Tian, Z.-Q. Organic-Inorganic Interactions of Single Crystalline Organo Lead Halide Perovskites Studied by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 18112−18118; (b) Park, M.; Kornienko, N.; Reyes-Lillo, S. E.; Lai, M.; Neaton, J. B.; Yang, P.; Mathies, R. A. Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Photochemistry. Nano Lett. 2017, 17, 4151−4157.
- 24 Weller, M. T.; Weber, O. J.; Henry, P. F.; Di Pumpo, A. M.; Hansen, T. C. Complete Structure and Cation Orientation in the Perovskite Photovoltaic Methylammonium Lead Iodide between 100 and 352 K. Chem. Commun. 2015, 51, 4180−4183.
- 25 Varadwaj, A.; Varadwaj, P. R.; Yamashita, K. Revealing the Chemistry between Band Gap and Binding Energy for Lead-/Tin-Based Trihalide Perovskite Solar Cell Semiconductors. ChemSusChem 2018, 11, 449−463.
- 26 Varadwaj, A.; Varadwaj, P. R.; Yamashita, K. Hybrid Organic-Inorganic CH3NH3PbI3 Perovskite Building Blocks: Revealing Ultra-Strong Hydrogen Bonding and Mulliken Inner Complexes and Their Implications in Materials Design. J. Comput. Chem. 2017, 38, 2802−2818.
- 27 Zhang, L.; Liu, X.; Li, J.; McKechnie, S. Interactions between Molecules and Perovskites in Halide Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2017, 175, 1−19.
- 28 Yang, J.; Chen, S.; Xu, J.; Zhang, Q.; Liu, H.; Liu, Z.; Yuan, M. A Review on Improving the Quality of Perovskite Films in Perovskite Solar Cells via the Weak Forces Induced by Additives. Appl. Sci. 2019, 9, 4393.
- 29 Zhu, M.; Li, C.; Li, B.; Zhang, J.; Sun, Y.; Guo, W.; Zhou, Z.; Pang, S.; Yan, Y. Interaction Engineering in Organic–Inorganic Hybrid Perovskite Solar Cells. Mater. Horiz. 2020, 7, 2208−2236.
- 30 Zhang, F.; Zhu, K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 1902579.
- 31(a) Gao, F.; Zhao, Y.; Zhang, X.; You, J. Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 1902650; (b) Li, Y.; Wu, H.; Qi, W.; Zhou, X.; Li, J.; Cheng, J.; Zhao, Y.; Li, Y.; Zhang, X. Passivation of Defects in Perovskite Solar cell: From a Chemistry Point of View. Nano Energy 2020, 77, 105237; (c) Zhou, X.; Qi, W.; Li, J.; Cheng, J.; Li, Y.; Luo, J.; Ko, M. J.; Li, Y.; Zhao, Y.; Zhang, X. Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific Defects. Sol. RRL 2020, 4, 2000308.
- 32(a) Bi, E.; Song, Z.; Li, C.; Wu, Z.; Yan, Y. Mitigating Ion Migration in Perovskite Solar Cells. Trends Chem. 2021, 3, 575−588; (b) Ye, Y.; Yin, Y.; Chen, Y.; Li, S.; Li, L.; Yamauchi, Y. Metal-Organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives. Small 2023, 19, 2208119.
- 33 Zhang, H.; Park, N.-G. Strain Control to Stabilize Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202212268.
- 34(a) Fu, Q.; Tang, X.; Huang, B.; Hu, T.; Tan, L.; Chen, L.; Chen, Y. Recent Progress on the Long-Term Stability of Perovskite Solar Cells. Adv. Sci. 2018, 5, 1700387;
10.1002/advs.201700387 Google Scholar(b) Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W. Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. Angew. Chem. Int. Ed. 2017, 56, 1190−1212.
- 35 Yun, S.; Zhou, X.; Even, J.; Hagfeldt, A. Theoretical Treatment of CH3NH3PbI3 Perovskite Solar Cells. Angew. Chem. Int. Ed. 2017, 56, 15806−15817.
- 36(a) Weller, M. T.; Weber, O. J.; Frost, J. M.; Walsh, A. Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 2015, 6, 3209−3212; (b) Wang, H.; Wu, H.; Xian, Y.; Niu, G.; Yuan, W.; Li, H.; Yin, H.; Liu, P.; Long, Y.; Li, W.; Fan, J. Controllable CsxFA1−xPbI3 Single-Crystal Morphology via Rationally Regulating the Diffusion and Collision of Micelles toward High-Performance Photon Detectors. ACS Appl. Mater. Interfaces 2019, 11, 13812−13821; (c) Gallop, N. P.; Selig, O.; Giubertoni, G.; Bakker, H. J.; Rezus, Y. L. A.; Frost, J. M.; Jansen, T. L. C.; Lovrincic, R.; Bakulin, A. A. Rotational Cation Dynamics in Metal Halide Perovskites: Effect on Phonons and Material Properties. J. Phys. Chem. Lett. 2018, 9, 5987−5997.
- 37(a) Fujiwara, H.; Kato, M.; Tamakoshi, M.; Miyadera, T.; Chikamatsu, M. Optical Characteristics and Operational Principles of Hybrid Perovskite Solar Cells. Phys. Status Solidi A 2018, 215, 1700730;
10.1002/pssa.201700730 Google Scholar(b) Kato, M.; Fujiseki, T.; Miyadera, T.; Sugita, T.; Fujimoto, S.; Tamakoshi, M.; Chikamatsu, M.; Fujiwara, H. Universal Rules for Visible-Light Absorption in Hybrid Perovskite Materials. J. Appl. Phys. 2017, 121, 115501.
- 38(a) Fujiwara, H.; Kato, M.; Tamakoshi, M.; Miyadera, T.; Chikamatsu, M. Optical Characteristics and Operational Principles of Hybrid Perovskite Solar Cells. Phys. Status Solidi A 2018, 215, 1700730;
10.1002/pssa.201700730 Google Scholar(b) Kato, M.; Fujiseki, T.; Miyadera, T.; Sugita, T.; Fujimoto, S.; Tamakoshi, M.; Chikamatsu, M.; Fujiwara, H. Universal Rules for Visible-Light Absorption in Hybrid Perovskite Materials. J. Appl. Phys. 2017, 121, 115501.
- 39 Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett. 2014, 14, 2584−2590.
- 40 Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498−6506.
- 41 El-Mellouhi, F.; Marzouk, A.; Tayeb Bentria, E.; Rashkeev, S. N.; Kais, S.; Alharbi, F. H. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites. ChemSusChem 2016, 9, 2648−2655.
- 42 Varadwaj, P. R.; Varadwaj, A.; Marques, H. M.; Yamashita, K. Significance of Hydrogen Bonding and Other Noncovalent Interactions in Determining Octahedral Tilting in the CH3NH3PbI3 Hybrid Organic-Inorganic Halide Perovskite Solar Cell Semiconductor. Sci. Rep. 2019, 9, 50.
- 43 Chen, T.; Foley, B. J.; Ipek, B.; Tyagi, M.; Copley, J. R. D.; Brown, C. M.; Choi, J. J.; Lee, S. Rotational Dynamics of Organic Cations in the CH3NH3PbI3 Perovskite. Phys. Chem. Chem. Phys. 2015, 17, 31278−31286.
- 44 Kanno, S.; Imamura, Y.; Saeki, A.; Hada, M. Rotational Energy Barriers and Relaxation Times of the Organic Cation in Cubic Methylammonium Lead/Tin Halide Perovskites from First Principles. J. Phys. Chem. C 2017, 121, 14051−14059.
- 45 Selig, O.; Sadhanala, A.; Müller, C.; Lovrincic, R.; Chen, Z.; Rezus, Y. L. A.; Frost, J. M.; Jansen, T. L. C.; Bakulin, A. A. Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead-Halide Perovskites. J. Am. Chem. Soc. 2017, 139, 4068−4074.
- 46 Liu, Y.; Akin, S.; Hinderhofer, A.; Eickemeyer, F. T.; Zhu, H.; Seo, J.-Y.; Zhang, J.; Schreiber, F.; Zhang, H.; Zakeeruddin, S. M.; Hagfeldt, A.; Dar, M. I.; Grätzel, M. Stabilization of Highly Efficient and Stable Phase-Pure FAPbI3 Perovskite Solar Cells by Molecularly Tailored 2D-Overlayers. Angew. Chem. Int. Ed. 2020, 59, 15688−15694.
- 47 Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16458−16462.
- 48 Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L.; Snaith, H. Formami-dinium Lead Trihalide: A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells. Energy Environ. Sci. 2014, 7, 982−988.
- 49 Ma, F.; Li, J.; Li, W.; Lin, N.; Wang, L.; Qiao, J. Stable α/δ Phase Junction of Formamidinium Lead Iodide Perovskites for Enhanced Near-Infrared Emission. Chem. Sci. 2016, 8, 800−805.
- 50 Wang, M.; Sun, H.; Meng, L.; Wang, M.; Li, L. A Universal Strategy of Intermolecular Exchange to Stabilize α-FAPbI3 and Manage Crystal Orientation for High-Performance Humid-Air-Processed Perovskite Solar Cells. Adv. Mater. 2022, 34, 2200041.
- 51 Lin, D.; Gao, Y.; Zhang, T.; Zhan, Z.; Pang, N.; Wu, Z.; Chen, K.; Shi, T.; Pan, Z.; Liu, P.; Xie, W. Vapor Deposited Pure α-FAPbI3 Perovskite Solar Cell via Moisture-Induced Phase Transition Strategy. Adv. Funct. Mater. 2022, 32, 2208392.
- 52 Gratia, P.; Zimmermann, I.; Schouwink, P.; Yum, J.-H.; Audinot, J.-N.; Sivula, K.; Wirtz, T.; Nazeeruddin, M. K. The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process. ACS Energy Lett. 2017, 2, 2686−2693.
- 53(a) Zheng, X.; Wu, C.; Jha, S. K.; Li, Z.; Zhu, K.; Priya, S. Improved Phase Stability of Formami-dinium Lead Triiodide Perovskite by Strain Relaxation. ACS Energy Lett. 2016, 1, 1014−1020; (b) Wu, C.; Chen, K.; Guo, D. Y.; Wang, S. L.; Li, P. G. Cations Substitution Tuning Phase Stability in Hybrid Perovskite Single Crystals by Strain Relaxation. RSC Adv. 2018, 8, 2900−2905.
- 54 Yin, J.; Teobaldi, G.; Liu, L.-M. The Role of Thermal Fluctuations and Vibrational Entropy: A Theoretical Insight into the δ-to-α Transition of FAPbI3. J. Phys. Chem. Lett. 2022, 13, 3089−3095.
- 55 Chen, T.; Foley, B. J.; Park, C, Brown, C. M.; Harriger, L. W.; Lee, J.; Ruff, J.; Yoon, M.; Choi, J. J.; Lee, S.-H. Entropy-Driven Structural Transition and Kinetic Trapping in Formamidinium Lead Iodide Perovskite. Sci. Adv. 2016, 2, e1601650.
- 56 Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared Photo-luminescent Properties. Inorg. Chem. 2013, 52, 9019−9038.
- 57 Fisicaro, G.; La Magna, A.; Alberti, A.; Smecca, E.; Mannino, G.; Deretzis, I. Local Order and Rotational Dynamics in Mixed A-Cation Lead Iodide Perovskites. J. Phys. Chem. Lett. 2020, 11, 1068−1074.
- 58 Wang, J.-F.; Fu, X.-N.; Wang, J.-T. First-Principles Analysis of the Structural, Electronic, and Elastic Properties of Cubic Organic-Inorganic Perovskite HC(NH2)2PbI3. Chin. Phys. B 2017, 26, 106301.
- 59 Carignano, M. A.; Saeed, Y.; Aravindh, S. A.; Roqan, I. S.; Even, J.; Katan, C. A Close Examination of the Structure and Dynamics of HC(NH2)2PbI3 by MD Simulations and Group Theory. Phys. Chem. Chem. Phys. 2016, 18, 27109−27118.
- 60 Kanno, S.; Imamura, Y.; Hada, M. Theoretical Study on Rotational Controllability of Organic Cations in Organic-Inorganic Hybrid Perovskites: Hydrogen Bonds and Halogen Substitution. J. Phys. Chem. C 2017, 121, 26188−26195.
- 61 Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr., Sect. A 1976, A32, 751−767.
- 62 Akhtarianfar, S. F.; Shojaei, S.; Asl, S. K. Organic Cation Rotation in HC(NH2)2PbI3 Perovskite Solar Cells: DFT & DOE Approach. Sol. Energy 2021, 220, 70−79.
- 63 Slimi, B.; Mollar, M.; Assaker, I. B.; Kriaa, I.; Chtourou, R.; Marí, B. Perovskite FA1−xMAxPbI3 for Solar Cells: Films Formation and Properties. Energy Procedia 2016, 102, 87−95.
- 64 Dalpian, G. M.; Zhao, X. G.; Kazmerski, L.; Zunger, A. Formation and Composition-Dependent Properties of Alloys of Cubic Halide Perovskites. Chem. Mater. 2019, 31, 2497−2506.
- 65 Ghosh, D.; Smith, A. R.; Walker, A. B.; Islam, M. S. Mixed A-Cation Perovskites for Solar Cells: Atomic-Scale Insights into Structural Distortion, Hydrogen Bonding, and Electronic Properties. Chem. Mater. 2018, 30, 5194−5204.
- 66 Drużbicki, K.; Lavén, R.; Armstrong, J.; Malavasi, L.; Fernandez-Alonso, F.; Karlsson, M. Cation Dynamics and Structural Stabilization in Formamidinium Lead Iodide Perovskites. J. Phys. Chem. Lett. 2021, 12, 3503−3508.
- 67
Matsui, T.; Seo, J.; Saliba, M.; Zakeeruddin, S. M.; Grätzel, M. Room Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells. Adv. Mater. 2017, 29, 1606258.
10.1002/adma.201606258 Google Scholar
- 68 Ghosh, D.; Walsh Atkins, P.; Islam, M. S.; Walker, A. B.; Eames, C. Good Vibrations: Locking of Octahedral Tilting in Mixed-Cation Iodide Perovskites for Solar Cells. ACS Energy Lett. 2017, 2, 2424−2429.
- 69(a) Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Stability of Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275; (b) Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y. Imperfections and Their Passivation in Halide Perovskite Solar Cells. Chem. Soc. Rev. 2019, 48, 3842–3867; (c) Senno, M.; Tinte, S. Mixed Formamidinium-Methylammonium Lead Iodide Perovskite from First-Principles: Hydrogen- Bonding Impact on the Electronic Properties. Phys. Chem. Chem. Phys. 2021, 23, 7376−7385.
- 70(a) Wang, X.; Huang, H.; Du, S.; Cui, P.; Lan, Z.; Yang, Y.; Yan, L.; Ji, J.; Liu, B.; Qu, S.; Zhang, Q.; Yue, X.; Zhao, X.; Li, M. Facile Synthesized Acetamidine Thiocyanate with Synergistic Passivation and Crystallization for Efficient Perovskite Solar Cells. Sol. RRL 2022, 6, 2200717; (b) Li, J.; Yan, K.; Chen, J.; Zhang, Y.; Yang, W.; Lian, X.; Wu, G.; Chen, H. Hydrogen Bond Enables Highly Efficient and Stable Two-Dimensional Perovskite Solar Cells Based on 4-Pyridine-Ethylamine. Org. Electron. 2019, 67, 122–127; (c) Zhao, J.; He, G.; Yang, D.; Guo, D.; Yang, L.; Chen, J.; Ma, D. Highly Stable and Efficient α-Phase FA-Based Perovskite Solar Cells Prepared in Ambient Air by Strategically Enhancing the Interaction between Ions in Crystal Lattices. Sustainable Energy Fuels 2021, 5, 4268.
- 71 Zhou, R.; Liu, X.; Li, H.; Wang, H.; Ouyang, Y.; Gong, X.; Peng, X.; Luo, H.; Ni, Y.; Zou, W.; Lei, Y. Sulfonyl and Carbonyl Groups in MSTC Effectively Improve the Performance and Stability of Perovskite Solar Cells. Sol. RRL 2022, 6, 2100731.
- 72 Sun, B.; Wang, W.; Lu, H.; Chao, L.; Gu, H.; Tao, L.; Hu, J.; Li, B.; Zong, X.; Shi, W.; Ran, X.; Zhang, H.; Xia, Y.; Li, P.; Chen, Y. Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells. J. Phys. Chem. C 2021, 125, 6555−6563.
- 73 Ning, L.; Ingabire, P. B.; Gu, N.; Du, P.; Lv, D.; Chen, X.; Song, L.; Chen, W.-H.; Xiong J. Fabrication of Stable Perovskite Solar Cells with Efficiency over 20% in Open Air Using in situ Polymerized Bi-Functional Additives. J. Mater. Chem. A 2022, 10, 3688–3697.
- 74 Shahbazi, S.; Li, M.-Y.; Fathi, A.; Diau, E. W.-G. Realizing a Cosolvent System for Stable Tin-Based Perovskite Solar Cells Using a Two-Step Deposition Approach. ACS Energy Lett. 2020, 5, 2508−2511.
- 75 Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. Solvent Engineering for High-Performance Inorganic−Organic Hybrid Perovskite Solar Cells. Nat. Mater. 2014, 13, 897−903.
- 76 Chen, C.; Li, F.; Zhu, L.; Shen, Z.; Weng, Y.; Lou, Q.; Tan, F.; Yue, G.; Huang, Q.; Wang, M. Efficient and Stable Perovskite Solar Cells Thanks to Dual Functions of Oleyl Amine-Coated PbSO4(PbO)4 Quantum Dots: Defect Passivation and Moisture/Oxygen Blocking. Nano Energy 2020, 68, 104313.
- 77 Wang, H.; Wu, H.; Xian, Y.; Niu, G.; Yuan, W.; Li, H.; Yin, H.; Liu, P.; Long, Y.; Li, W.; Fan, J. Controllable CsxFA1−xPbI3 Single-Crystal Morphology via Rationally Regulating the Diffusion and Collision of Micelles toward High-Performance Photon Detectors. ACS Appl. Mater. Interfaces 2019, 11, 13812−13821.
- 78 Xie, H.; Wang, Z.; Chen, Z.; Pereyra, C.; Pols, M.; Gałkowski, K.; Anaya, M.; Fu, S.; Jia, X.; Tang, P.; Agarwalla, A.; Kim, H.-S.; Prochowicz, D.; Bonn, M.; Bao, C.; Sun, X.; Zakeeruddin, S. M.; Emsley, L.; Arbiol, J.; Gao, F.; Fu, F.; Wang, H. I.; Tielrooij, K.-J.; Stranks, S. D.; Tao, S.; Hagfeldt, A.; Lira-Cantu, M. Decoupling the Effects of Defects on Efficiency and Stability through Phosphonates in Stable Halide Perovskite Solar Cells. Joule 2021, 5, 1246–1266.
- 79 Liu, Y.; Xiang, W.; Mou, S.; Zhang, H.; Liu, S. Synergetic Surface Defect Passivation towards Efficient and Stable Inorganic Perovskite Solar Cells. Chem. Eng. J. 2022, 447, 137515.
- 80 Nimens, W. J.; Lefave, S. J.; Flannery, L.; Ogle, J.; Smilgies, D.-M.; Kieber-Emmons, M. T.; Whittaker-Brooks, L. Understanding Hydrogen Bonding Interactions in Crosslinked Methylammonium Lead Iodide Crystals: Towards Reducing Moisture and Light Degradation Pathways. Angew. Chem. Int. Ed. 2019, 58, 13912−13921.
- 81 Li, P.; Yan, L.; Cao, Q.; Liang, C.; Zhu, H.; Peng, S.; Yang, Y.; Liang, Y.; Zhao, R.; Zang, S.; Zhang, Y.; Song, Y. Dredging the Charge-Carrier Transfer Pathway for Efficient LowDimensional Ruddlesden-Popper Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202217910.
- 82 Su, Y.; Yang, J.; Rao, H.; Zhong, Y.; Sheng, W.; Tan, L.; Chen, Y. Environmentally Friendly Anti-Solvent Engineering for High-Efficiency Tin-Based Perovskite Solar Cells. Energy Environ. Sci. 2023, 16, 2177−2186.
- 83(a) Zhou, X.; Qiu, J.; Li, J.; Qi, W.; Li, Y.; Jiao, S.; Ling, H.; Wang, P.; Liu, F.; Sohail, K.; Li, J.; Wang, G.; Chen, X.; Hou, G.; Luo, J.; Zhang, X.; Zhao, Y.; Li, Y.; Zhang, X. Reduced Defects and Enhanced Vbi in Perovskite Absorbers through Synergetic Passivating Effect Using 4-Methoxyphenylacetic Acid. J. Power Sources 2022, 518, 230734; (b) Tang, S.; Peng, Y.; Zhu, Z.; Zong, J.; Zhao, L.; Yu, L.; Chen, R.; Li, M. Simultaneous Bulk and Surface Defect Passivation for Efficient Inverted Perovskite Solar Cells. J. Phys. Chem. Lett. 2022, 13, 5116−5122; (c) Liu, L.; Li, Y.; Zheng, C.; Liu, Z.; Yuan, N.; Ding, J.; Wang, D.; Liu, S. F. Collaborative Strategy of Multifunctional Groups in Trifluoroacetamide Achieving Efficient and Stable Perovskite Solar Cells. Sol. RRL 2022, 6, 2200284; (d) Cai, Y.; Cui, J.; Chen, M.; Zhang, M.; Han, Y.; Qian, F.; Zhao, H.; Yang, S.; Yang, Z.; Bian, H.; Wang, T.; Guo, K.; Cai, M.; Dai, S.; Liu, Z.; Liu, S. F. Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2020, 31, 2005776; (e) Ghaderian, A.; Hemasiri, N. H.; Ahmad, S.; Kazim, S. Amplify the Performance and Stability of Perovskite Solar Cells Using Fluorinated Salt as the Surface Passivator. Energy Technol. 2023, 11, 2200211.
- 84 Choi, M.-J.; Lee, Y.-S.; Cho, I. H.; Kim, S.-S.; Kim, D.-H.; Kwon, S.; Na, S.-I. Functional Additives for High-Performance Inverted Planar Perovskite Solar Cells with Exceeding 20% Efficiency: Selective Complexation of Organic Cations in Precursors. Nano Energy 2020, 71, 104639.
- 85 Liu, G.; Zheng, H.; Zhang, L.; Xu, H.; Xu, S.; Xu, X.; Liang, Z.; Pan, X. Tailoring Multifunctional Passivation Molecules with Halogen Functional Groups for Efficient and Stable Perovskite Photovoltaics. Chem. Eng. J. 2021, 407, 127204.
- 86 Zhu, Z.; Jiang, X.; Yu, D.; Yu, N.; Ning, Z.; Mi, Q. Smooth and Compact FASnI3 Films for Lead-Free Perovskite Solar Cells with over 14% Efficiency. ACS Energy Lett. 2022, 7, 2079−2083.
- 87 Ko, S.-G.; Ryu, G.-I.; Kim, B.; Cha, G.-J.; Ri, J.-H.; Sonu, G.-S.; Kim, U.-C. Effects of Thiourea on the Perovskite Crystallization for Fully Printable Solar Cells. Sol. Energy Mat. Sol. C 2019, 196, 105–110.
- 88(a) Du, J.; Duan, J.; Yang, X.; Zhou, Q.; Duan, Y.; Zhang, T.; Tang, Q. Reducing Defect of Inorganic Perovskite Film by Sulphur-Containing Lewis Base for Robust Photodetectors. J. Energy Chem. 2021, 61, 163–169; (b) Liu, W.; Lu, Y.; Wei, D.; Huo, X.; Huang, X.; Li, Y.; Meng, J.; Zhao, S.; Qiao, B.; Liang, Z.; Xu, Z.; Song, D. Screening Interface Passivation Materials Intelligently through Machine Learning for Highly Efficient Perovskite Solar Cells. J. Mater. Chem. A 2022, 10, 17782.
- 89 Che, Y.; Liu, Z.; Duan, Y.; Wang, J.; Yang, S.; Xu, D.; Xiang, W.; Wang, T.; Yuan, N.; Ding, J.; Liu, S. F. Hydrazide Derivatives for Defect Passivation in Pure CsPbI3 Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202205012.
- 90(a) Hao, Y.; Wang, X.; Zhu, M.; Jiang, X.; Wang, L.; Cao, G.; Pang, S.; Zhou, Z. Sulfonyl Passivation through Synergistic Hydrogen Bonding and Coordination Interactions for Efficient and Stable Perovskite Solar Cells. J. Mater. Chem. A 2022, 10, 13048; (b) Zhang, J.; Li, C.; Zhu, M.; Qiu, J.; Yang, Y.; Li, L.; Tang, S.; Li, Z.; Mao, Z.; Cheng, Z.; Xiang, S.; Zhang, X.; Zhang, Z. Stable and Environmentally Friendly Perovskite Solar Cells Induced by Grain Boundary Engineering with Self-Assembled Hydrogen-Bonded Porous Frameworks. Nano Energy 2023, 108, 108217.
- 91 Liu, X.; Wu, J.; Guo, Q.; Yang, Y.; Luo, H.; Liu, Q.; Wang, X.; He, X.; Huang, M.; Lan, Z. Pyrrole: An Additives for Improving Efficiency and Stability of the Perovskite Solar Cells. J. Mater. Chem. C 2019, 7, 12717.
- 92(a) Jung, K.; Chae, W.-S.; Choi, J. W.; Kim, K. C.; Lee, M.-J. Synergistic Passivation of MAPbI3 Perovskite Solar Cells by Compositional Engineering Using Acetamidinium Bromide Additives. J. Energy Chem. 2021, 59, 755–762; (b) Kim, J.; Yun, A. J.; Gil, B.; Lee, Y.; Park, B. Triamine-Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905190.
- 93 Gu, X.; Xiang, W.; Tian, Q.; Liu, S. F. Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 23164–23170.
- 94(a) Lee, J.-W.; Dai, Z.; Lee, C.; Lee, H. M.; Han, T.-H.; Marco, N. D.; Lin, O.; Choi, C. S.; Dunn, B. S. Koh, J. D.; Carlo, D.; Ko, J. H.; Maynard, H. D.; Yang, Y. Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. J. Am. Chem. Soc. 2018, 140, 6317–6324; (b) Nakamura, T.; Shioya, N.; Shimoaka, T.; Nishikubo, R.; Hasegawa, T.; Saeki, A.; Murata, Y.; Murdey, R.; Wakamiya, A. Molecular Orientation Change in Naphthalene Diimide Thin Films Induced by Removal of Thermally Cleavable Substituents. Chem. Mater. 2019, 31, 1729−1737.
- 95 Koo, D.; Cho, Y.; Kim, U.; Jeong, G.; Lee, J.; Seo, J.; Yang, C.; Park, H. High-Performance Inverted Perovskite Solar Cells with Operational Stability via n-Type Small Molecule Additive-Assisted Defect Passivation. Adv. Energy Mater. 2020, 10, 2001920.
- 96 Wang, L.; Song, Q.; Pei, F.; Chen, Y.; Dou, J.; Wang, H.; Shi, C.; Zhang, X.; Fan, R.; Zhou, W.; Qiu, Z.; Kang, J.; Wang, X.; Lambertz, A.; Sun, M.; Niu, X.; Ma, Y.; Zhu, C.; Zhou, H.; Hong, J.; Bai, Y.; Duan, W.; Ding, K.; Chen, Q. Strain Modulation for Light-Stable n–i–p Perovskite/Silicon Tandem Solar Cells. Adv. Mater. 2022, 34, 2201315.
- 97 Fu, P.; Liu, Z.; Xu, D.; Yang, B.; Liu, Y.; Feng, Z.; Feng, Z.; Guo, X.; Li, C. Urea Derivative-Promoted CsPbI2Br Perovskite Solar Cells with High Open-Circuit Voltage. Sol. RRL 2022, 6, 2101057.
- 98(a) Meng, X.; Lin, J.; Liu, X.; He, X.; Wang, Y.; Noda, T.; Wu, T.; Yang, X.; Han, L. Highly Stable and Efficient FASnI3-Based Perovskite Solar Cells by Introducing Hydrogen Bonding. Adv. Mater. 2019, 31, 1903721; (b) Zhong, M.; Chai, L.; Wang, Y.; Di, J. Enhanced Efficiency and Stability of Perovskite Solar Cell by Adding Polymer Mixture in Perovskite Photoactive Layer. J. Alloys Compd. 2021, 864, 158793; (c) Sin, D. H.; Jo, S. B.; Lee, S. G.; Ko, H.; Kim, M.; Lee, H.; Cho, K. Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer. ACS Appl. Mater. Interfaces 2017, 9, 18103−18112; (d) Meng, Q.; Qiu, Y.; Cai, K.; Ding, Y.; Wang, M.; Pu, H.; Yao, Q.; Chen, L.; He, J. Exfoliated Graphitic Carbon Nitride Self-Recognizing CH3NH3PbI3 Grain Boundaries by Hydrogen Bonding Interaction for Improved Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 33254−33262.
- 99(a) Meng, X.; Wang, Y.; Lin, J.; Liu, X.; He, X.; Barbaud, J.; Wu, T.; Noda, T.; Yang, X.; Han, L. Surface-Controlled Oriented Growth of FASnI3 Crystals for Efficient Lead-free Perovskite Solar Cells. Joule 2020, 4, 902−912; (b) Cui, D.; Liu, X.; Wu, T.; Lin, X.; Luo, X.; Wu, Y.; Segawa, H.; Yang, X.; Zhang, Y.; Wang, Y.; Han, L. Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution. Adv. Funct. Mater. 2021, 31, 2100931.
- 100 Yin, Y.; Wang, M.; Malgras, V.; Yamauchi, Y. Stable and Efficient Tin-Based Perovskite Solar Cell via Semi-Conducting-Insulating Structure. ACS Appl. Energy Mater. 2020, 3, 10447−10452.
- 101 Peng, H.; Cai, M.; Zhou, J.; Yang, Y.; Ding, X.; Tao, Y.; Wu, G.; Liu, X.; Pan, J. H.; Dai, S. Structurally Reinforced All-Inorganic CsPbI2Br Perovskite by Nonionic Polymer via Coordination and Hydrogen Bonds. Sol. RRL 2020, 4, 2000216.
- 102(a) Yua, S.; Liu, H.; Wang, S.; Zhu, H.; Li, X. Hydrazinium Cation Mixed FAPbI3-Based Perovskite with 1D/3D Hybrid. Chem. Eng. J. 2021, 403, 125724; (b) Li, M.; Sun, R.; Chang, J.; Dong, J.; Tian, Q.; Wang, H.; Li, Z.; Yang, P.; Shi, H.; Yang, C.; Wu, Z.; Li, R.; Yang, Y.; Wang, A.; Zhang, S.; Wang, F.; Huang, W.; Qin, T. Orientated Crystallization of FA-based Perovskite via Hydrogen-Bonded Polymer Network for Efficient and Stable Solar Cells. Nat. Commun. 2022, 14, 537.
- 103(a) Zhang, W.; Yuan, H.; Li, X.; Guo, X.; Lu, C.; Liu, A.; Yang, H.; Xu, L.; Shi, X.; Fang, Z.; Yang, H.; Cheng, Y.; Fang, J. Component Distribution Regulation in Sn-Pb Perovskite Solar Cells through Selective Molecular Interaction. Adv. Mater. 2023, 35, 2303674; (b) Jiang, H.; Yan, Z.; Zhao, H.; Yuan, S.; Yang, Z.; Li, J.; Liu, B.; Niu, T.; Feng, J.; Wang, Q.; Wang, D.; Yang, H.; Liu, Z.; Liu, S. F. Bifunctional Hydroxylamine Hydrochloride Incorporated Perovskite Films for Efficient and Stable Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 900–909.
- 104 Ghosh, D.; Smith, A. R.; Walker, A. B.; Islam, M. S. Mixed A-Cation Perovskites for Solar Cells: Atomic-Scale Insights into Structural Distortion, Hydrogen Bonding, and Electronic Properties. Chem. Mater. 2018, 30, 5194−5204.
- 105 Marco, N. D.; Zhou, H.; Chen, Q.; Sun, P.; Liu, Z.; Meng, L.; Yao, E.-P.; Liu, Y.; Schiffer, A.; Yang, Y. Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. Nano Lett. 2016, 16, 1009–1016.
- 106 Qi, W.; Li, J.; Li, Y.; Sohail, K.; Ling, H.; Wang, P.; Jiao, S.; Liu, F.; Zhou, X.; Wang, H.; Zhang, D.; Ding, Y.; Chen, X.; Hou, G.; Luo, J.; Zhao, Y.; Li, Y.; Zhang, X. Manipulated Crystallization and Passivated Defects for Efficient Perovskite Solar Cells via Addition of Ammonium Iodide. ACS Appl. Mater. Interfaces 2021, 13, 34053−34063.
- 107 Yang, Y.; Zhao, W.; Yang, T.; Liu, J.; Zhang, J.; Fang, Y.; Liu, S. F. Design of Surface Termination for High-Performance Perovskite Solar Cells. J. Mater. Chem. A 2021, 9, 23597.
- 108 Zhuang, S.; Xu, D.; Xu, J.; Wu, B.; Zhang, Y.; Dong, X.; Li, G.; Zhang, B.; Du, G. Temperature-Dependent Photoluminescence on Organic-Inorganic Metal Halide Perovskite CH3NH3PbI3–xClx Prepared on ZnO/FTO Substrates Using a Two-Step Method. Chinese Phys. B 2017, 26, 17802.
- 109(a) Li, T.; Hu, Y.; Morrison, C. A.; Wu, W.; Han, H.; Robertson, N. Lead-Free Pseudo-Three-Dimensional Organic–Inorganic Iodobismuthates for Photovoltaic Applications. Sustain. Enerr. Fuels 2017, 1, 308-316; (b) Islam, M. A.; Mohafez, H.; Sobayel, K.; Hatta, S. F. W. M.; Hasan, A. K. M.; Khandaker, M. U.; Akhtaruzzaman M.; Muhammad, G.; Amin, N. Degradation of Perovskite Thin Films and Solar Cells with Candle Soot C/Ag Electrode Exposed in a Control Ambient. Nanomaterials 2021, 11, 3463.
- 110 Yin, Y.; Fu, S.; Zhou, S.; Song, Y.; Li, L.; Zhang, M.; Wang, J.; Mariyappan, P.; Alshehri, S. M.; Ahamad, T.; Yamauchi, Y. Efficient and Stable Ideal Bandgap Perovskite Solar Cell Achieved by a Small Amount of Tin Substituted Methylammonium Lead Iodide Electron. Mater. Lett. 2020, 16, 224–230.
- 111 Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics. Sol. RRL 2019, 3, 1900304.
- 112 Wu, J.; Zhang, W.; Wang, Q.; Liu, S.; Du, J.; Mei, A.; Rong, Y.; Hu, Y.; Han, H. A Favored Crystal Orientation for Efficient Printable Mesoscopic Perovskite Solar Cells. J. Mater. Chem. A 2020, 8, 11148–11154.
- 113 Hartono, N. T. P.; Thapa, J.; Tiihonen, A.; Oviedo, F.; Batali, C.; Yoo, J. J.; Liu, Z.; Li, R.; Marrón, D. F.; Bawendi, M. G.; Buonassisi, T.; Sun, S. How Machine Learning Can Help Select Capping Layers to Suppress Perovskite Degradation. Nat. Commun. 2020, 11, 4172.
- 114 Chowdhury, T. H.; Kaneko, R.; Kaneko, T.; Sodeyama, K.; Lee, J.-J.; Islam, A. Electronic Defect Passivation of FASnI3 Films by Simultaneous Hydrogen-bonding and Chlorine Coordination for Highly Efficient and Stable Perovskite Solar Cells. Chem. Eng. J. 2022, 431, 133745.
- 115 Kanno, S.; Imamura, Y.; Hada, M. First-Principles Calculations of the Rotational Motion and Hydrogen Bond Capability of Large Organic Cations in Hybrid Perovskites. J. Phys. Chem. C 2018, 122, 15966−15972.
- 116 Hou, X.; Hu, Y.; Liu, H.; Mei, A.; Li, X.; Duan, M.; Zhang, G.; Rong, Y.; Han, H. Effect of Guanidinium on Mesoscopic Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 73.
- 117(a) Santhosh, N.; Sitaaraman, S. R.; Pounraj, P.; Govindaraj, R.; Pandian, M. S.; Ramasamy, P. Fabrication of Hole-Transport-Free Perovskite Solar Cells Using 5-Ammonium Valeric Acid Iodide as additive and Carbon as Counter Electrode. Mater. Lett. 2018, 236, 706–709; (b) Hoshi, H.; Shigeeda, N.; Dai, T. Improved Oxidation Stability of Tin Iodide Cubic Perovskite Treated by 5-Ammonium Valeric Acid Iodide. Mater. Lett. 2016, 183, 391–393.
- 118(a) Li, X.; Dar, M. I.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H.; Grätzel, M. Improved Performance and Stability of Perovskite Solar Cells by Crystal Crosslinking with Alkylphosphonic Acid ω-Ammonium Chlorides. Nat. Chem. 2015, 7, 703–711; (b) Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, M. K. One-Year Stable Perovskite Solar Cells by 2D/3D Interface Engineering. Nat. Commun. 2017, 8, 15684.
- 119 Wu, Y.; Wang, Q.; Chen, Y.; Qiu, W.; Peng, Q. Stable Perovskite Solar Cells with 25.17% Efficiency Enabled by Improving Crystallization and Passivating Defects Synergistically. Energy Environ. Sci. 2022, 15, 4700.
- 120 Ahmad, S.; Ma, R.; Zheng, J.; Kwok, C. K. G.; Zhou, Q.; Ren, Z.; Kim, J.; He, X.; Zhang, X.; Yu, K. M.; Choy, W. C. H. Suppressing Nickel Oxide/Perovskite Interface Redox Reaction and Defects for Highly Performed and Stable Inverted Perovskite Solar Cells. Small Methods 2022, 6, 2200787.
- 121 Tan, S.; Shi, J.; Yu, B.; Zhao, W.; Li, Y.; Li, Y.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. Inorganic Ammonium Halide Additive Strategy for Highly Efficient and Stable CsPbI3 Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2010813.
- 122 Tang, G.; You, P.; Tai, Q.; Wu, R.; Yan, F. Performance Enhancement of Perovskite Solar Cells Induced by Lead Acetate as an Additive. Sol. RRL 2018, 2, 1800066.
- 123 Li, S.; Xia, J.; Wen, Z.; Gu, H.; Guo, J.; Liang, C.; Pan, H.; Wang, X.; Chen, S. The Formation Mechanism of (001) Facet Dominated α-FAPbI3 Film by Pseudohalide Ions for High-Performance Perovskite Solar Cells. Adv. Sci. 2023, 10, 2300056.
- 124 Masi, S.; Gualdrón-Reyes, A. F.; Mora-Seró, I. Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3. ACS Energy Lett. 2020, 5, 1974−1985.
- 125 Gong, C.; Zhang, C.; Zhuang, Q.; Li, H.; Yang, H.; Chen, J.; Zang, Z. Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells. Nano-Micro Lett. 2023, 15, 17.
- 126
Jaju, K.; Pal, D.; Chakraborty, A.; Chakraborty, S. Electronic substituent effect on Se-H⋯N hydrogen bond: A computational study of para-substituted pyridine-SeH2 complexes. Chem. Phys. Lett. 2019, 737, 100031.
10.1016/j.cpletx.2019.100031 Google Scholar
- 127 Pal, D.; Agrawal, S. K.; Chakraborty, A.; Chakraborty, S. Hydrogen Bond Properties of Se in [ROH–Se (CH3)2] Complexes (R = H, CH3, C2H5): Matrix-Isolation Infrared Spectroscopy and Theoretical Calculations. Phys. Chem. Chem. Phys. 2023, 25, 11286−11300.
- 128 Li, X.; Dar, M. I.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H.; Grätzel, M. Improved Performance and Stability of Perovskite Solar Cells by Crystal Crosslinking with Alkylphosphonic Acid ω-Ammonium Chlorides. Nat. Chem. 2015, 7, 703–711.
- 129(a) Cui, L.; He, B.; Ding, Y.; Zhu, J.; Yao, X.; Ti, J.; Chen, H.; Duan, Y.; Tang, Q. Multifunctional Interface Modifier Ammonium Silicofluoride for Efficient and Stable All-Inorganic CsPbBr3 Perovskite Solar Cells. Chem. Eng. J. 2022, 431, 134193; (b) Hu, W.; Wen, Z.; Yu, X.; Qian, P.; Lian, W.; Li, X.; Shang, Y.; Wu, X.; Chen, T.; Lu, Y.; Wang, M.; Yang, S. In Situ Surface Fluorination of TiO2 Nanocrystals Reinforces Interface Binding of Perovskite Layer for Highly Efficient Solar Cells with Dramatically Enhanced Ultraviolet-Light Stability. Adv. Sci. 2021, 8, 2004662.
- 130 Yang, J.; Liu, C.; Cai, C.; Hu, X.; Huang, Z.; Duan, X.; Meng, X.; Yuan, Z.; Tan, L.; Chen, Y. High-Performance Perovskite Solar Cells with Excellent Humidity and Thermo-Stability via Fluorinated Perylenediimide. Adv. Energy Mater. 2019, 9, 1900198.
- 131(a) Li, T.; Wang, S.; Yang, J.; Pu, X.; Gao, B.; He, Z.; Cao, Q.; Han, J.; Li, X. Multiple Functional Groups Synergistically Improve the Performance of Inverted Planar Perovskite Solar Cells. Nano Energy 2021, 82, 105742; (b) Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D. R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635.
- 132 Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237.
- 133 Zhang, Y.; Fei, Z.; Gao, P.; Lee, Y.; Tirani, F. F.; Scopelliti, R.; Feng, Y.; Dyson, P. J.; Nazeeruddin, M. K. A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquid-Dopants. Adv. Mater. 2017, 29, 1702157.
- 134 Bu, T.; Liu, X.; Zhou, Y.; Yi, J.; Huang, X.; Luo, L.; Xiao, J.; Ku, Z.; Peng, Y.; Huang, F.; Cheng, Y.-B.; Zhong, J. A Novel Quadruple-Cation Absorber for Universal Hysteresis Elimination for High Efficiency and Stable Perovskite Solar Cells. Energy Environ. Sci. 2016, 9, 3071−3078.
- 135 Chao, L.; Xia, Y.; Li, B.; Xing, G.; Chen, Y.; Huang, W. Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air. Chem 2019, 5, 995−1006.
- 136 Dupont, J. From Molten Salts to Ionic Liquids: A “Nano” Journey. Acc. Chem. Res. 2011, 44, 1223–1231.
- 137 Li, D.; Chao, L.; Chen, C.; Ran, X.; Wang, Y.; Niu, T.; Lv, S.; Wu, H.; Xia, Y.; Ran, C.; Song, L.; Chen, S.; Chen, Y.; Huang, W. In Situ Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. Nano Lett. 2020, 20, 5799−5806.
- 138 Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Zhou, Z.; Noda, T.; Han, L. Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 Achieved by Additive Engineering. Adv. Mater. 2017, 29, 1701073.
- 139 Lee, D.-K.; Jeong, D.-N.; Ahn, T. K.; Park, N.-G. Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency. ACS Energy Lett. 2019, 4, 2393−2401.
- 140 Chao, L.; Xia, Y.; Duan, X.; Wang, Y.; Ran, C.; Niu, T.; Gu, L.; Li, D.; Hu, J.; Gao, X.; Zhang, J.; Chen, Y. Direct and Stable ɑ-Phase Formation via Ionic Liquid Solvation for Formamidinium-Based Perovskite Solar Cells. Joule 2022, 6, 2203−2217.
- 141(a) Wang, X.; Zhang, D.; Liu, B.; Wu, X.; Jiang, X.; Zhang, S.; Wang, Y.; Gao, D.; Wang, L.; Wang, H.; Huang, Z.; Xie, X.; Chen, T.; Xiao, Z.; He, Q.; Xiao, S.; Zhu, Z.; Yang, S. Highly Efficient Perovskite/Organic Tandem Solar Cells Enabled by Mixed-Cation Surface Modulation. Adv. Energy Mater. 2023, 13, 2300700; (b) Shen, W.; Cai, H.; Kong, Y.; Dong, W.; Bai, C.; Liang, G.; Li, W.; Zhao, J.; Huang, F.; Cheng, Y.-B.; Zhong, J. Protic Amine Carboxylic Acid Ionic Liquids Additives Regulate α-FAPbI3 Phase Transition for High-Efficiency Perovskite Solar Cells. Small 2023, 19, 2302194.
- 142 Lv, S.; Gao, W.; Xing, G.; Chao, L.; Song, L.; Li, M.; Fu, L.; Chen, Y.; Ran, C. Improving the Air Resistance of the Precursor Solution for Ambient-Air Coating of an Sn–Pb Perovskite Film with Superior Photovoltaic Performance. ACS Appl. Mater. Interfaces 2022, 14, 43362–43371.
- 143 Shi, L.; Yuan, H.; Sun, X.; Li, X.; Zhu, W.; Wang, J.; Duan, L.; Li, Q.; Zhou, Z.; Huang, Z.; Ban, X.; Zhang, D. MAAc Ionic Liquid-Assisted Defect Passivation for Efficient and Stable CsPbIBr2 Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 10584–10592.
- 144 Wang, Y.; Chao, L.; Niu, T.; Li, D.; Wei, Q.; Wu, H.; Qiu, J.; Lu, H.; Ran, C.; Zhong, Q.; Song, L.; Xing, G.; Xia, Y.; Chen, Y.; Müller-Buschbaum, P.; Huang, W. Efficient and Stable Perovskite Solar Cells by Fluorinated Ionic Liquid Induced Component Interaction. Sol. RRL 2021, 5, 2000582.
- 145 Gao, X.; Ding, B.; Kanda, H.; Fei, Z.; Luo, W.; Zhang, Y.; Shibayama, N.; Tirani, F. F.; Scopelliti, R.; Kinge, S.; Zhang, B.; Feng, Y.; Dyson, P. J.; Nazeeruddin, M. K. Engineering Long-Term Stability into Perovskite Solar Cells via Application of a Multi-Functional TFSI-Based Ionic Liquid. Cell Rep. Phys. Sci. 2021, 2, 100475.
- 146(a) Hendon, C. H.; Yang, R. X.; Burton, L. A.; Walsh, A. Assessment of Polyanion (BF4− and PF6−) Substitutions in Hybrid Halide Perovskites. J. Mater. Chem. A 2015, 3, 9067−9070; (b) Nagane, S.; Ogale, S. CH3NH3Pb(BF4)3 and (C4H9NH3)2Pb(BF4)4 Family of 3D and 2D Perovskites without and with Iodide and Bromide Ions Substitution. J. Phys. Chem. Lett. 2016, 7, 4757–4762.
- 147 Li, G.; Su, Z.; Li, M.; Yang, F.; Aldamasy, M. H.; Pascual, J.; Yang, F.; Liu, H.; Zuo, W.; Girolamo, D. D.; Iqbal, Z.; Nasti, G.; Dallmann, A.; Gao, X.; Wang, Z.; Saliba, M.; Abate, A. Ionic Liquid Stabilizing High-Efficiency Tin Halide Perovskite Solar Cells. Adv. Energy Mater. 2021, 11, 2101539.
- 148
Daub, M.; Hillebrecht, H. Understanding the “Molten Salt” Synthesis of MAPbI3 – Characterization of New Lead(II)-Ammine Complexes as Intermediates. Eur. J. Inorg. Chem. 2021, 15, 1490–1497.
10.1002/ejic.202100077 Google Scholar
- 149 Cao, F.; Zhu, Z.; Zhang, C.; Chen, P.; Wang, S.; Tong, A.; He, R.; Wang, Y.; Sun, W.; Li, Y.; Wu, J. Synergistic Ionic Liquid in Hole Transport Layers for Highly Stable and Efficient Perovskite Solar Cells. Small 2023, 19, 2207784.
- 150 Cui, Y.; Shi, J.; Meng, F.; Yu, B.; Tan, S.; He, S.; Tan, C.; Li, Y.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. A Versatile Molten-Salt Induction Strategy to Achieve Efficient CsPbI3 Perovskite Solar Cells with a High Open-Circuit Voltage >1.2 V. Adv. Mater. 2022, 34, 2205028.