In Situ Synthesis of Cu3P/P-Doped g-C3N4 Tight 2D/2D Heterojunction Boosting Photocatalytic H2 Evolution†
Fangyong Hou
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
‡ These authors contribute equally.
† Dedicated to the Special Issue of Emerging Investigators in 2022.
Search for more papers by this authorFeng Liu
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
‡ These authors contribute equally.
† Dedicated to the Special Issue of Emerging Investigators in 2022.
Search for more papers by this authorHaochen Wu
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
‡ These authors contribute equally.
† Dedicated to the Special Issue of Emerging Investigators in 2022.
Search for more papers by this authorMuhammad Qasim
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
School of Electronic Engineering, Jiujiang University, Jiujiang, Jiangxi, 332005 China
Search for more papers by this authorYi Chen
Gree Altairnano New Energy Inc, Zhuhai, Guangdong, 519040 China
Search for more papers by this authorYang Duan
Gree Altairnano New Energy Inc, Zhuhai, Guangdong, 519040 China
Search for more papers by this authorZhibo Feng
Gree Altairnano New Energy Inc, Zhuhai, Guangdong, 519040 China
Search for more papers by this authorCorresponding Author
Maochang Liu
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
Gree Altairnano New Energy Inc, Zhuhai, Guangdong, 519040 China
Suzhou Academy of Xi'an Jiaotong University, Suzhou, Jiangsu, 215123 China
*E-mail: [email protected]Search for more papers by this authorFangyong Hou
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
‡ These authors contribute equally.
† Dedicated to the Special Issue of Emerging Investigators in 2022.
Search for more papers by this authorFeng Liu
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
‡ These authors contribute equally.
† Dedicated to the Special Issue of Emerging Investigators in 2022.
Search for more papers by this authorHaochen Wu
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
‡ These authors contribute equally.
† Dedicated to the Special Issue of Emerging Investigators in 2022.
Search for more papers by this authorMuhammad Qasim
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
School of Electronic Engineering, Jiujiang University, Jiujiang, Jiangxi, 332005 China
Search for more papers by this authorYi Chen
Gree Altairnano New Energy Inc, Zhuhai, Guangdong, 519040 China
Search for more papers by this authorYang Duan
Gree Altairnano New Energy Inc, Zhuhai, Guangdong, 519040 China
Search for more papers by this authorZhibo Feng
Gree Altairnano New Energy Inc, Zhuhai, Guangdong, 519040 China
Search for more papers by this authorCorresponding Author
Maochang Liu
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China
Gree Altairnano New Energy Inc, Zhuhai, Guangdong, 519040 China
Suzhou Academy of Xi'an Jiaotong University, Suzhou, Jiangsu, 215123 China
*E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Heterojunction design in a two-dimensional (2D) fashion has been deemed beneficial for improving the photocatalytic activity of g-C3N4 because of the promoted interfacial charge transfer, yet still facing challenges. Herein, we construct a novel 2D/2D Cu3P nanosheet/P-doped g-C3N4 (PCN) nanosheet heterojunction photocatalyst (PCN/Cu3P) through a simple in-situ phosphorization treatment of 2D/2D CuS/g-C3N4 composite for photocatalytic H2 evolution. We demonstrate that the 2D lamellar structure of both CuS and g-C3N4 could be well reserved in the phosphorization process, while CuS and g-C3N4 in-situ transformed into Cu3P and PCN, respectively, leading to the formation of PCN/Cu3P tight 2D/2D heterojunction. Owing to the large contact area provided by intimate face-to-face 2D/2D structure, the PCN/Cu3P photocatalyst exhibits significantly enhanced charge separation efficiency, thus achieving a boosted visible-light-driven photocatalytic behavior. The highest rate for H2 evolution reaches 5.12 μmol·h–1, nearly 24 times and 368 times higher than that of pristine PCN and g-C3N4, respectively. This work represents an excellent example in elaborately constructing g-C3N4-based 2D/2D heterostructure and could be extended to other photocatalyst/co-catalyst system.
Supporting Information
Filename | Description |
---|---|
cjoc202200445-sup-0001-Supinfo.pdfPDF document, 2.4 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
- 2 Cao, C.; Xiong, Y. Solar-Driven Artificial Carbon Cycle. Chin. J. Chem. 2022, 40, 153–159.
- 3 Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 2019, 120, 919–985.
- 4 Dotan, H.; Landman, A.; Sheehan, S. W.; Malviya, K. D.; Shter, G. E.; Grave, D. A.; Arzi, Z.; Yehudai, N.; Halabi, M.; Gal, N.; Hadari, N.; Cohen, C.; Rothschild, A.; Grader, G. S. Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy. 2019, 4, 786–795.
- 5 Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata T.; Chen, S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.
- 6 Chaubey, S.; Yadav, R.; Kim, T.; Yadav, T.; Kumar, A.; Dwivedi, D. K. Fabrication of Graphitic Carbon Nitride-Based Film: An Emerged Highly Efficient Catalyst for Direct C—H Arylation Under Solar Light. Chin. J. Chem. 2021, 39, 633–639.
- 7 Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.
- 8 Shi, T.; Liu, Y.; Wang, S.; Lv, Q.; Yu, B. Recyclable Carbon Nitride Nanosheet-Photocatalyzed Aminomethylation of Imidazo[1,2-a]pyridines in Green Solvent. Chin. J. Chem. 2022, 40, 97–103.
- 9 Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.
- 10 Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17.
- 11 Ren, W.; Yang, J.; Zhang, J.; Li, W.; Sun, C.; Zhao, H.; Wen, Y.; Sha, O.; Liang, B. Recent progress in SnO2/g-C3N4 heterojunction photocatalysts: synthesis, modification, and application. J. Alloys Compd. 2022, 906, 164372.
- 12 Zhu, E.; Zhao, Y.; Dai, Y.; Wang, Q.; Dong, Y.; Chen Q. Heterojunction-Type Photocatalytic System Based on Inorganic Halide Perovskite CsPbBr3. Chin. J. Chem. 2020, 38, 1718–1722.
- 13 Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324.
- 14 Jiang, Y.; Liu, P.; Chen, Y.; Zhou, Z.; Yang, H.; Hong, Y.; Li, F.; Ni, L.; Yan, Y.; Gregory, D. H. Construction of stable Ta3N5/g-C3N4 metal/non-metal nitride hybrids with enhanced visible-light photocatalysis. Appl. Surf. Sci. 2017, 391, 392–403.
- 15 Das, P. K.; Sivasankaran, R. P.; Arunachalam, M.; Subhash, K. R.; Ha, J.-S.; Ahn, K.-S.; Kang, S. H. Highly efficient and stable g-C3N4 decorated Ta3N5 nanotube on n-Si substrate for solar water oxidation. Appl. Surf. Sci. 2021, 565, 150456.
- 16 Zhao, D.; Wang, Y.; Dong, C.-L.; Huang, Y.-C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy. 2021, 6, 388–397.
- 17 Zhang, Y.; Jin, Z.; Wang, G. Charge transfer behaviors over MOF-5@g-C3N4 with NixMo1−xS2 modification. Int. J. Hydrogen Energy 2018, 43, 9914–9923.
- 18 Li, Y.; Fang, Y.; Cao, Z.; Li, N.; Chen, D.; Xu, Q.; Lu, J. Construction of g-C3N4/PDI@MOF heterojunctions for the highly efficient visible light-driven degradation of pharmaceutical and phenolic micropollutants. Appl. Catal. B: Environ. 2019, 250, 150–162.
- 19 Zhang, X.; Yuan, X.; Jiang, L.; Zhang, J.; Yu, H.; Wang, H.; Zeng, G. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: recent advances. Chem. Eng. J. 2020, 390, 124475.
- 20 Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. g-C3N4-based 2D/2D composite heterojunction photocatalyst. Small Struct. 2021, 2, 2100086.
- 21 Fu, W.; Liu, M.; Xue, F.; Wang, X.; Diao, Z.; Guo, L. Facile polyol synthesis of CuS nanocrystals with a hierarchical nanoplate structure and their application for electrocatalysis and photocatalysis. RSC Adv. 2016, 6, 80361–80367.
- 22
Xue, F.; Wu, H.; Liu, Y.; Min, M.; Hatami, M.; Li, N.; Liu, M. CuS nanosheet-induced local hot spots on g-C3N4 boost photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2022, DOI: https://doi.org/10.1016/j.ijhydene.2022.05.087.
10.1016/j.ijhydene.2022.05.087 Google Scholar
- 23 Wang, M.; Yang, L.; Hu, B.; Liu, Y.; Song, Y.; He, L. A novel electrochemical sensor based on Cu3P@NH2-MIL-125(Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine. Appl. Surf. Sci. 2018, 445, 123–132.
- 24 Liu, L.; Ge, L.; Sun, Y.; Jiang, B.; Cheng, Y.; Xu, L. Quasi-layer Co2P-polarized Cu3P nanocomposites with enhanced intrinsic interfacial charge transfer for efficient overall water splitting. Nanoscale 2019, 11, 6394–6400.
- 25 Du, Y.; Yin, Z.; Zhu, J.; Huang, X.; Wu, X.-J.; Zeng, Z.; Yan, Q.; Zhang, H. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 2012, 3, 1177.
- 26 Zhang, X.; Liu, M.; Kang, Z.; Wang, B.; Wang, B.; Jiang, F. Wang, X.; Yang, D. P.; Luque, R. NIR-triggered photocatalytic/photothermal/ photodynamic water remediation using eggshell-derived CaCO3/CuS nanocomposites. Chem. Eng. J. 2020, 388, 124304.
- 27 Ding, H.; Han, D.; Han, Y.; Liang, Y.; Liu, X.; Li, Z.; Zhu, S.; Wu, S. Visible light responsive CuS/ protonated g-C3N4 heterostructure for rapid sterilization. J. Hazard. Mater. 2020, 393, 122423.
- 28 Xu, C.; He, H.; Xu, Z.; Qi, C.; Li, S.; Ma, L.; Qiu, P.; Yang, S. Modification of graphitic carbon nitride by elemental boron cocatalyst with high-efficient charge transfer and photothermal conversion. Chem. Eng. J. 2021, 417, 129203.
- 29 Yang, H.; Xu, B.; Yuan, S.; Zhang, Q.; Zhang, M.; Ohno, T. Synthesis of Y-doped CeO2/PCN nanocomposited photocatalyst with promoted photoredox performance. Appl. Catal. B: Environ. 2019, 243, 513–521.
- 30 Xue, F.; Si, Y.; Wang, M.; Liu, M.; Guo, L. Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production. Nano Energy 2019, 62, 823–831.
- 31 Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation. J. Am. Chem. Soc. 2010, 132, 6294–6295.
- 32 Xu, H.; Xiao, R.; Huang, J.; Jiang, Y.; Zhao, C.; Yang, X. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production. Chin. J. Catal. 2021, 42, 107–114.
- 33 Zeng, Y.; Liu, X.; Liu, C.; Wang, L.; Xia, Y.; Zhang, S.; Luo, S.; Pei, Y. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B: Environ. 2018, 224, 1–9.
- 34 Wulan, B.-R.; Yi, S.-S.; Li, S.-J.; Duan, Y.-X.; Yan, J.-M.; Jiang, Q. Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting. Appl. Catal. B: Environ. 2018, 231, 43–50.
- 35 Feng, J.; Zhang, D.; Zhou, H.; Pi, M.; Wang, X.; Chen, S. Coupling P Nanostructures with P-Doped g-C3N4 As Efficient Visible Light Photocatalysts for H2 Evolution and RhB Degradation. ACS Sustainable Chem. Eng. 2018, 6, 6342–6349.
- 36 Wang, M.; Cheng, J.; Wang, X.; Hong, X.; Fan, J.; Yu, H. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin. J. Catal. 2021, 42, 37–45.
- 37 Chen, P.; Meng, L.-H.; Chen, L.; Guo, J.-K.; Shen, S.; Au, C.-T.; Yin, S.-F. Double-Shell and Flower-Like ZnS–C3N4 Derived from in Situ Supramolecular Self-Assembly for Selective Aerobic Oxidation of Amines to Imines. ACS Sustain. Chem. Eng. 2019, 7, 14203–14209.
- 38 Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. A novel and highly efficient earth-abundant Cu3P with TiO2 “P–N” heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale 2016, 8, 17516–17523.
- 39 Hua, S.; Qu, D.; An, L.; Jiang, W.; Wen, Y.; Wang, X.; Sun, Z. Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route. Appl. Catal. B: Environ. 2019, 240, 253–261.
- 40 Wang, X.; Pan, Q.; Xie, Y.; Wang, L.; Liu, J.; Wang, S.; Pan, K. Monodisperse Cu3P nanoplates in situ grown on reduced graphene oxide via hydrophobic interaction for water splitting. Mater. Lett. 2022, 306, 130947.
- 41Zhou, Y.; Zhang, L.; Liu, J.; Fan, X.; Wang, B.; Wang, M.; Ren, W.; Wang, J.; Li, M.; Shi, J. Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 2015, 3, 3862–3867.
- 42 Zou, J.; Liao, G.; Wang, H.; Ding, Y.; Wu, P.; Hsu, J.-P.; Jiang, J. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts. J. Alloys Compd. 2022, 911, 165020.
- 43 Chen, T.; Song, C.; Fan, M.; Hong, Y.; Hu, B.; Yu, L.; Shi, W. In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer. Int. J. Hydrogen Energy 2017, 42, 12210–12219.
- 44
Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum, New York, 1980.
10.1007/978-1-4613-3144-5 Google Scholar
- 45 Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534.