New Amines and Activation Modes in Asymmetric Aminocatalysis
Zhi-Chao Chen
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041 China
Search for more papers by this authorWei Du
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041 China
Search for more papers by this authorCorresponding Author
Ying-Chun Chen
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041 China
College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038 China
E-mail: [email protected]Search for more papers by this authorZhi-Chao Chen
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041 China
Search for more papers by this authorWei Du
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041 China
Search for more papers by this authorCorresponding Author
Ying-Chun Chen
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041 China
College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038 China
E-mail: [email protected]Search for more papers by this authorAbstract
Asymmetric aminocatalysis has become one of the most powerful strategies for the transformations of carbonyl substances over the past two decades. Here, we describe the research from our laboratory that significantly expands the horizon of aminocatalysis. It includes the development and application of cinchona-based primary amines, fruitful reactions based on HOMO-raising strategy, and the disclosure of amine/thiol double activation catalysis.
What is the most favorite and original chemistry developed in your research group?
Cinchona-based primary amine catalysts and trienamine activation mode.
How do you get into this specific field? Could you please share some experiences with our readers?
I got to know asymmetric catalysis when I began to pursue my PhD study, and realized the importance and beauty of chiral substances. My key experiences in research are: try something different, and be sensitive to the difference.
How do you supervise your students?
Always keep honest, and try to understand what you are doing.
What are your hobbies?
Gardening and badminton.
How do you keep balance between research and family?
Keep communicating with family members.
Who influences you mostly in your life?
My PhD director Prof. Yao-Zhong Jiang.
References
- 1(a) Agranat, I.; Caner, H.; Caldwell, J. Putting chirality to work: the strategy of chiral switches. Nat. Rev. Drug Discov. 2002, 1, 753–768; (b) Brooks, W. H.; Guida, W. C.; Daniel, K. G. The significance of chirality in drug design and development. Curr. Top. Med. Chem. 2011, 11, 760–770; (c) Jeschke, P. Current status of chirality in agrochemicals. Pest Manage. Sci. 2018, 74, 2389–2404.
- 2(a) MacMillan, D. W. The advent and development of organocatalysis. Nature 2008, 455, 304–308;
(b) Dalko, P. I. Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Vol. 3, Wiley-VCH, Weinheim, 2013;
10.1002/9783527658862 Google Scholar(c) Hughes, D. L. Asymmetric organocatalysis in drug development-highlights of recent patent literature. Org. Process Res. Dev. 2018, 22, 574–584.
- 3 Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Asymmetric aminocatalysis--gold rush in organic chemistry. Angew. Chem. Int. Ed. 2008, 47, 6138–6171.
- 4 Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Asymmetric enamine catalysis. Chem. Rev. 2007, 107, 5471–5569.
- 5(a) Erkkilä, A.; Majander, I.; Pihko, P. M. Iminium catalysis. Chem. Rev. 2007, 107, 5416–5470; (b) Brazier J. B.; Tomkinson, N. C. O. Secondary and primary amine catalysts for iminium catalysis. In: Asymmetric organocatalysis. Topics in Current Chemistry, Vol. 291, Ed.: List, B., Springer, Heidelberg, 2010.
- 6(a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels–Alder reaction. J. Am. Chem. Soc. 2000, 122, 4243–4244; for selected reviews, see: (b) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. The diarylprolinol silyl ether system: a general organocatalyst. Acc. Chem. Res. 2012, 45, 248–264.
- 7For limited examples of functionalizations of hindered aldehydes via secondary amine catalysis, see: (a) Emma, M. G.; Lombardo, M.; Trombini, C.; Quintavalla, A. The organocatalytic α-fluorination of chiral γ-nitroaldehydes: the challenge of facing the construction of a quaternary fluorinated stereocenter. Eur. J. Org. Chem. 2016, 2016, 3223–3232; (b) Gorde, A. B.; Ramapanicker, R. Enantioselective Michael addition of aldehydes to β-nitrostyrenes catalyzed by (S)-N-(D-Prolyl)-1-triflicamido-3-phenylpropan-2-amine. Eur. J. Org. Chem. 2019, 2019, 4745–4751; (c) Gorde, A. B.; Ramapanicker, R. D-Prolyl-2-(trifluoromethylsulfonamidopropyl) pyrrolidine: an organocatalyst for asymmetric Michael addition of aldehydes to β-nitroalkenes at ambient conditions. J. Org. Chem. 2019, 84, 1523−1533.
- 8 Ishihara, K.; Nakano, K. Design of an organocatalyst for the enantioselective Diels–Alder reaction with α-acyloxyacroleins. J. Am. Chem. Soc. 2005, 127, 10504–10505.
- 9 Hine, J.; Yeh, C. Y. Equilibrium in formation and conformational isomerization of imines derived from isobutyraldehyde and saturated aliphatic primary amines. J. Am. Chem. Soc. 1967, 89, 2669–2676.
- 10(a) Huang, H.; Jacobsen, E. N. Highly enantioselective direct conjugate addition of ketones to nitroalkenes promoted by a chiral primary amine−thiourea catalyst. J. Am. Chem. Soc. 2006, 128, 7170–7171; (b) Sakakura, A.; Suzuki, K.; Nakano, K.; Ishihara, K. Chiral 1, 1’-binaphthyl-2,2’-diammonium salt catalysts for the enantioselective Diels–Alder reaction with α-acyloxyacroleins. Org. Lett. 2006, 8, 2229–2232.
- 11(a) Song, C. E. Cinchona Alkaloids in Synthesis and Catalysis: Ligands,
Immobilization and Organocatalysis, Wiley-VCH, Weinheim, 2009;
10.1002/9783527628179 Google Scholar(b) Marcelli, T.; Hiemstra, H. Cinchona alkaloids in asymmetric organocatalysis. Synthesis 2010, 2010, 1229–1279.
- 12(a) Brunner, H.; Bügler, J.; Nuber, B. Enantioselective catalysis 98. Preparation of 9-amino(9-deoxy) cinchona alkaloids. Tetrahedron: Asymmetry 1995, 6, 1699–1702; (b) Cassani, C.; Martín-Rapún, R.; Arceo, E.; Bravo, F.; Melchiorre, P. Synthesis of 9-amino(9-deoxy)epi cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds. Nat. Protoc. 2013, 8, 325–344.
- 13 Aune, M.; Gogoll, A.; Matsson, O. Solvent dependence of enantioselectivity for a base-catalyzed 1,3-hydron transfer reaction. A kinetic isotope effect and NMR spectroscopic study. J. Org. Chem. 1995, 60, 1356–1364.
- 14 Xie, J.-W.; Chen, W.; Li, R.; Zeng, M.; Du, W.; Yue, L.; Chen, Y.-C.; Wu, Y.; Zhu, J.; Deng, J.-G. Highly asymmetric Michael addition to α,β-unsaturated ketones catalyzed by 9-amino-9-deoxyepiquinine. Angew. Chem. Int. Ed. 2007, 46, 389–392.
- 15 Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.; Melchiorre, P. Organocatalytic asymmetric Friedel−Crafts alkylation of indoles with simple α,β-unsaturated ketones. Org. Lett. 2007, 9, 1403–1405.
- 16 McCooey, S. H.; Connon, S. J. Readily accessible 9-epi-amino cinchona alkaloid derivatives promote efficient, highly enantioselective additions of aldehydes and ketones to nitroolefins. Org. Lett. 2007, 9, 599–602.
- 17For selected reviews, see: (a) Xu, L. W.; Luo, J.; Lu, Y. Asymmetric catalysis with chiral primary amine-based organocatalysts. Chem. Commun. 2009, 14, 1807–1821; (b) Melchiorre, P. Cinchona-based primary amine catalysis in the asymmetric functionalization of carbonyl compounds. Angew. Chem. Int. Ed. 2012, 51, 9748–9770; (c) Duan, J.; Li, P. Asymmetric organocatalysis mediated by primary amines derived from cinchona alkaloids: recent advances. Catal. Sci. Technol. 2014, 4, 311–320.
- 18(a) Xie, J.-W.; Yue, L.; Chen, W.; Du, W.; Zhu, J.; Deng, J.-G.; Chen, Y.-C. Highly enantioselective Michael addition of cyclic 1,3-dicarbonyl compounds to α,β-unsaturated ketones. Org. Lett. 2007, 9, 413–415; (b) Qiao, Z.; Shafiq, Z.; Liu, L.; Yu, Z.-B.; Zheng, Q.-Y.; Wang, D.; Chen, Y.-J. An organocatalytic δ-regioselective and highly enantioselective nucleophilic substitution of cyclic Morita–Baylis–Hillman alcohols with indoles. Angew. Chem. Int. Ed. 2010, 49, 7294–7298; (c) Mose, R.; Jensen, M. E.; Preegel, G., Jørgensen, K. A. Direct access to multifunctionalized norcamphor scaffolds by asymmetric organocatalytic Diels–Alder reactions. Angew. Chem. Int. Ed. 2015, 54, 13630–13634; (d) Mose, R.; Preegel, G.; Larsen, J.; Jakobsen, S.; Iversen, E. H.; Jørgensen, K. A. Organocatalytic stereoselective [8+2] and [6+4] cycloadditions. Nat. Chem. 2017, 9, 487–492.
- 19 Jen, W. S.; Wiener, J. J.; MacMillan, D. W. New strategies for organic catalysis: the first enantioselective organocatalytic 1,3-dipolar cycloaddition. J. Am. Chem. Soc. 2000, 122, 9874–9875.
- 20 Chen, W.; Du, W.; Duan, Y.-Z.; Wu, Y.; Yang, S.-Y.; Chen, Y.-C. Enantioselective 1,3-dipolar cycloaddition of cyclic enones catalyzed by multifunctional primary amines: beneficial effects of hydrogen bonding. Angew. Chem. Int. Ed. 2007, 46, 7667–7670.
- 21 Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.; Arceo, E.; Melchiorre, P. Diastereodivergent asymmetric sulfa-Michael additions of α-branched enones using a single chiral organic catalyst. J. Am. Chem. Soc. 2011, 133, 17934–17941.
- 22(a) Zhang, E.; Fan, C.-A.; Tu, Y.-Q.; Zhang, F.-M.; Song, Y.-L. Organocatalytic asymmetric vinylogous α-ketol rearrangement: enantioselective construction of chiral all-carbon quaternary stereocenters in spirocyclic diketones via semipinacol-type 1,2-carbon migration. J. Am. Chem. Soc. 2009, 131, 14626–14627; (b) Yan, C.-X.; Yang, F.-L.; Lu, K.; Yang, X.; Zhou, P.-P.; Shao, X. A semipinacol rearrangement of vinylogous α-ketol cocatalyzed by a cinchona-based primary amine and N-Boc-phenylglycines: mechanisms, roles of catalysts and the origin of enantioselectivity. Org. Chem. Front. 2020, 7, 1845–1861.
- 23 Song, X.; Yan, R.-J.; Du, W.; Chen, Y.-C. Asymmetric dearomative cascade multiple functionalizations of activated N-alkylpyridinium and N-alkylquinolinium salts. Org. Lett. 2020, 22, 7617–7621.
- 24For selected reviews, see: (a) Jurberg, I. D.; Chatterjee, I.; Tannert, R.; Melchiorre, P. When asymmetric aminocatalysis meets the vinylogy principle. Chem. Commun. 2013, 49, 4869–4883; (b) Curti, C.; Battistini, L.; Sartori, A.; Zanardi, F. New developments of the principle of vinylogy as applied to π-extended enolate-type donor systems. Chem. Rev. 2020, 120, 2448–2612.
- 25 Juhl, K.; Jørgensen, K. A. The first organocatalytic enantioselective inverse-electron-demand hetero-Diels–Alder reaction. Angew. Chem. Int. Ed. 2003, 42, 1498–1501.
- 26 Han, B.; Li, J.-L.; Ma, C.; Zhang, S.-J.; Chen, Y.-C. Organocatalytic asymmetric inverse-electron-demand aza-Diels–Alder reaction of N-sulfonyl-1-aza-1,3-butadienes and aldehydes. Angew. Chem. Int. Ed. 2008, 47, 9971–9974.
- 27For a review, see: (a) Li, J.-L.; Liu, T.-Y.; Chen, Y.-C. Aminocatalytic asymmetric Diels–Alder reactions via HOMO activation. Acc. Chem. Res. 2012, 45, 1491–1500; for selected examples, see: (b) Li, J.-L.; Zhou, S.-L.; Han, B.; Wu, L.; Chen, Y.-C. Aminocatalytic asymmetric inverse-electron-demand aza-Diels–Alder reaction of N-Ts-1-aza-1,3- butadienes based on coumarin cores. Chem. Commun. 2010, 46, 2665–2667; (c) Jiang, X.; Fu, D.; Shi, X.; Wang, S.; Wang, R. PPh3-catalyzed synthesis of dicyano-2-methylenebut-3-enoates as efficient dienes in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chem. Commun. 2011, 47, 8289–8291.
- 28(a) He, Z.-Q.; Han, B.; Li, R.; Wu, L.; Chen, Y.-C. Enantioselective construction of lactone[2,3-b]piperidine skeletons via organocatalytic tandem reactions. Org. Biomol. Chem. 2010, 8, 755–757; (b) Zhou, S.-L.; Li, J.-L.; Dong, L.; Chen, Y.-C. Organocatalytic sequential hetero-Diels–Alder and Friedel–Crafts reaction: constructions of fused heterocycles with scaffold diversity. Org. Lett. 2011, 13, 5874–5877; (c) Li, Q.-Z.; Ma, L.; Dong, L.; Chen, Y.-C. Asymmetric aza-Diels–Alder and cation-olefin cyclization sequence: a concise way to fused chiral cyclopenta[b]piperidines. ChemCatChem 2012, 4, 1139–1142.
- 29 Bertelsen, S.; Marigo, M.; Brandes, S.; Diner, P.; Jørgensen, K. A. Dienamine catalysis: organocatalytic asymmetric γ-amination of α,β-unsaturated aldehydes. J. Am. Chem. Soc. 2006, 128, 12973–12980.
- 30 Bergonzini, G.; Vera, S.; Melchiorre, P. Cooperative organocatalysis for the asymmetric γ alkylation of α-branched enals. Angew. Chem. Int. Ed. 2010, 49, 9685–9688.
- 31For selected example, see: Halskov, K. S.; Donslund, B. S.; Barfusser, S.; Jørgensen, K. A. Organocatalytic asymmetric formation of steroids. Angew. Chem. Int. Ed. 2014, 53, 4137–4141.
- 32For selected example, see: Li, W.; Wei, J.; Jia, Q.; Du, Z.; Zhang, K.; Wang, J. Asymmetric synthesis of tetrahydroquinolines through a [3+2] cycloaddition controlled by dienamine catalysis. Chem. Eur. J. 2014, 20, 6592–6596.
- 33For selected example, see: Albrecht, Ł.; Dickmeiss, G.; Cruz Acosta, F.; Rodríguez-Escrich, C.; Davis, R. L.; Jørgensen, K. A. Asymmetric organocatalytic formal [2+2]-cycloadditions via bifunctional H-bond directing dienamine catalysis. J. Am. Chem. Soc. 2012, 134, 2543–2546.
- 34 Klier, L.; Tur, F.; Poulsen, P. H.; Jørgensen, K. A. Asymmetric cycloaddition reactions catalysed by diarylprolinol silyl ethers. Chem. Soc. Rev. 2017, 46, 1080–1102.
- 35 Han, B.; He, Z.-Q.; Li, J.-L.; Li, R.; Jiang, K.; Liu, T.-Y.; Chen, Y.-C. Organocatalytic regio- and stereoselective inverse-electron-demand aza-Diels–Alder reaction of α,β-unsaturated aldehydes and N-tosyl-1- aza-1,3-butadienes. Angew. Chem. Int. Ed. 2009, 48, 5474–5477.
- 36 Gu, J.; Ma, C.; Li, Q.-Z.; Du, W.; Chen, Y.-C. β,γ-Regioselective inverse-electron-demand aza-Diels–Alder reactions with α,β-unsaturated aldehydes via dienamine catalysis. Org. Lett. 2014, 16, 3986–3989.
- 37 Li, J.-L.; Kang, T.-R.; Zhou, S.-L.; Li, R.; Wu, L.; Chen, Y.-C. Organocatalytic asymmetric invers-electron-demand Diels–Alder reaction of electron-deficient dienes and crotonaldehyde. Angew. Chem. Int. Ed. 2010, 49, 6418–6420.
- 38 Li, J.-L.; Zhou, S.-L.; Chen, P.-Q.; Dong, L.; Liu, T.-Y.; Chen, Y.-C. Asymmetric Diels–Alder reaction of β,β-disubstituted enals and chromone-fused dienes: construction of collections with high molecular complexity and skeletal diversity. Chem. Sci. 2012, 3, 1879–1882.
- 39 Xiao, W.; Yin, X.; Zhou, Z.; Du, W.; Chen, Y.-C. Asymmetric α,γ-regioselective [3+3] formal cycloadditions of α,β-unsaturated aldehydes via cascade dienamine-dienamine Catalysis. Org. Lett. 2016, 18, 116–119.
- 40(a) Bencivenni, G.; Galzerano, P.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Direct asymmetric vinylogous Michael addition of cyclic enones to nitroalkenes via dienamine catalysis. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20642–20647; (b) Bastida, D.; Liu, Y.; Tian, X.; Escudero- Adán, E.; Melchiorre, P. Asymmetric vinylogous aldol reaction via H-bond-directing dienamine catalysis. Org. Lett. 2013, 15, 220–223.
- 41 Feng, X.; Zhou, Z.; Zhou, R.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. Stereodivergence in amine-catalyzed regioselective [4+2] cycloadditions of β-substituted cyclic enones and polyconjugated malononitriles. J. Am. Chem. Soc. 2012, 134, 19942–19947.
- 42 Zhou, R.; Xiao, W.; Yin, X.; Zhan, G.; Chen, Y. Diastereo- and enantioselective [4+2] cycloadditions of cyclic enones with cyclic 1-azadienes. Acta Chim. Sinica 2014, 72, 862–866.
- 43 Yin, X.; Zheng, Y.; Feng, X.; Jiang, K.; Wei, X.-Z.; Gao, N.; Chen, Y.-C. Asymmetric [5+3] formal cycloadditions with cyclic enones through cascade dienamine-dienamine catalysis. Angew. Chem. Int. Ed. 2014, 53, 6245–6248.
- 44 Jia, Z.-J.; Jiang, H.; Li, J.-L.; Gschwend, B.; Li, Q.-Z.; Yin, X.; Grouleff, J.; Chen, Y.-C.; Jørgensen, K. A. Trienamines in asymmetric organocatalysis: Diels-Alder and tandem reactions. J. Am. Chem. Soc. 2011, 133, 5053–5061.
- 45 Jia, Z.-J.; Zhou, Q.; Zhou, Q.-Q.; Chen, P.-Q.; Chen, Y.-C. exo-Selective asymmetric Diels–Alder reaction of 2,4-dienals and nitroalkenes by trienamine catalysis. Angew. Chem. Int. Ed. 2011, 50, 8638–8641.
- 46For selected examples, see: (a) Zhang, S.-J.; Zhang, J.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. Aminocatalytic asymmetric exo-Diels–Alder reaction with methiodide salts of Mannich bases and 2,4-dienals to construct chiral spirocycles. Org. Lett. 2013, 15, 968–971; (b) Yuan, X.; Zhang, S.-J.; Du, W.; Chen, Y.-C. Asymmetric Diels–Alder cycloadditions of trifluoromethylated dienophiles under trienamine catalysis. Chem. - Eur. J. 2016, 22, 11048–11052.
- 47For a review. see: (a) Gu, J.; Du, W.; Chen, Y.-C. Combined asymmetric aminocatalysis and carbene catalysis. Synthesis 2015, 47, 3451–3459; for selected example, see: (b) Jia, Z.-J.; Jiang, K.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. Amine–N-heterocyclic carbene cascade catalysis for the asymmetric synthesis of fused indane derivatives with multiple chiral centres. Chem. Commun. 2013, 49, 5892–5894.
- 48 Ma, C.; Jia, Z.-J.; Liu, J.-X.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. A concise assembly of electron-deficient 2,4-dienes and 2,4-dienals: regio- and stereoselective exo-Diels–Alder and redox reactions through sequential amine and carbene catalysis. Angew. Chem. Int. Ed. 2013, 52, 948–951.
- 49 Xiong, X.-F.; Zhou, Q.; Gu, J.; Dong, L.; Liu, T.-Y.; Chen, Y.-C. Trienamine catalysis with 2,4-dienones: development and application in asymmetric Diels–Alder reactions. Angew. Chem. Int. Ed. 2012, 51, 4401–4404.
- 50 Feng, X.; Zhou, Z.; Ma, C.; Yin, X.; Li, R.; Dong, L.; Chen, Y.-C. Trienamines derived from interrupted cyclic 2,5-dienones: remote δ,ε-C=C bond activation for asymmetric inverse-electron-demand aza-Diels–Alder reaction. Angew. Chem. Int. Ed. 2013, 52, 14173–14176.
- 51(a) Feng, X.; Zhou, Z.; Yin, X.; Li, R.; Chen, Y.-C. Enantioselective direct bisvinylogous 1,6-additions of β-allyl-2-cyclohexenone to α,α-dicyanodienes through trienamine catalysis. Eur. J. Org. Chem. 2014, 2014, 5906–5909; (b) Zhou, Z.; Feng, X.; Yin, X.; Chen, Y.-C. Direct remote asymmetric bisvinylogous 1,4-additions of cyclic 2,5-dienones to nitroalkenes. Org. Lett. 2014, 16, 2370–2373.
- 52 Xiao, W.; Yang, Q.-Q.; Chen, Z.; Ouyang, Q.; Du, W.; Chen, Y.-C. Regio- and diastereodivergent [4+2] cycloadditions with cyclic 2,4-dienones. Org. Lett. 2018, 20, 236–239.
- 53For a review, see: (a) Przydacz, A.; Skrzyńska, A.; Albrecht, Ł. Breaking aromaticity with aminocatalysis: a convenient strategy for asymmetric synthesis. Angew. Chem. Int. Ed. 2019, 58, 63–73; for selected examples, see: (b) Xiao, Y.-C.; Yue, C.-Z.; Chen, P.-Q.; Chen, Y.-C. Asymmetric dearomatic Diels–Alder reactions of diverse heteroarenes via π-system activation. Org. Lett. 2014, 16, 3208–3211; (c) Yang, G.-J.; Du, W.; Chen, Y.-C. Construction of furan derivatives with a trifluoromethyl stereogenic center: enantioselective Friedel–Crafts alkylations via formal trienamine catalysis. J. Org. Chem. 2016, 81, 10056–10061.
- 54(a) Paras, N. A.; MacMillan, D. W. New strategies in organic catalysis: the first enantioselective organocatalytic Friedel−Crafts alkylation. J. Am. Chem. Soc. 2001, 123, 4370–4371; (b) Gao, J.-R.; Wu, H.; Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X. Highly enantioselective construction of trifluoromethylated all-carbon quaternary stereocenters via nickel- catalyzed Friedel–Crafts alkylation reaction. J. Am. Chem. Soc. 2013, 135, 2983–2986.
- 55 Li, J.-L.; Yue, C.-Z.; Chen, P.-Q.; Xiao, Y.-C.; Chen, Y.-C. Remote enantioselective Friedel-Crafts alkylations of furans through HOMO activation. Angew. Chem. Int. Ed. 2014, 53, 5449–5452.
- 56 Xiao, B.-X.; Du, W.; Chen, Y.-C. Asymmetric dearomatizative Diels–Alder reaction for the construction of hydrodibenzo[b,d]furan frameworks with tetrasubstituted stereogenic centers. Adv. Synth. Catal. 2017, 359, 1018–1027.
- 57 Xiao, B.-X.; Yan, R.-J.; Gao, X.-Y.; Du, W.; Chen, Y.-C. Asymmetric benzylic functionalizations of 3-vinyl benzofurans via cascade formal trienamine-vinylogous iminium ion activation. Org. Lett. 2017, 19, 4652–4655.
- 58(a) Stiller, J.; Poulsen, P. H.; Cruz, D. C.; Dourado, J.; Davis, R. L.; Jørgensen, K. A. Organocatalytic [4+2] addition reactions via tetraenamine intermediate. Chem. Sci. 2014, 5, 2052–2056; (b) Zhou, Q.-Q.; Xiao, Y.-C.; Yuan, X.; Chen, Y.-C. Asymmetric Diels–Alder reactions of 2,4,6-trienals via tetraenamine catalysis. Asian J. Org. Chem. 2014, 3, 545–549.
- 59 He, X.-L.; Zhao, H.-R.; Duan, C.-Q.; Du, W.; Chen, Y.-C. Remote asymmetric oxa-Diels–Alder reaction of 5-allylic furfurals via dearomatizative tetraenamine catalysis. Org. Lett. 2018, 20, 804–807.
- 60 Zhou, Z.; Wang, Z.-X.; Zhou, Y.-C.; Xiao, W.; Ouyang, Q.; Du, W.; Chen, Y.-C. Switchable regioselectivity in amine-catalysed asymmetric cycloadditions. Nat. Chem. 2017, 9, 590–594.
- 61 Yang, Q.-Q.; Yin, X.; He, X.-L.; Du, W.; Chen, Y.-C. Asymmetric formal [5+3] cycloadditions with unmodified Morita–Baylis–Hillman alcohols via double activation catalysis. ACS Catal. 2019, 9, 1258–1263.
- 62(a) Wang, Z.-X.; Zhou, Z.; Xiao, W.; Ouyang, Q.; Du, W.; Chen, Y.-C. Double activation catalysis for α'-alkylidene cyclic enones with chiral amines and thiols. Chem. Eur. J. 2017, 23, 10678–10682; (b) Yang, Q.-Q.; Xiao, W.; Du, W.; Ouyang, Q.; Chen, Y.-C. Asymmetric [4+2] annulations to construct norcamphor scaffolds with 2-cyclopentenone via double amine-thiol catalysis. Chem. Commun. 2018, 54, 1129–1132.
- 63(a) Zhou, Z.; He, Q.; Jiang, Y.; Ouyang, Q.; Du, W.; Chen, Y. C. Double thiol-chiral Brønsted base catalysis: asymmetric cross Rauhut-Currier reaction and sequential [4+2] annulation for assembly of different activated olefins. Org. Lett. 2019, 21, 7184–7188; (b) He, Q.; Yang, Z.-H.; Yang, J.; Du, W.; Chen, Y.-C. Enantioselective formal arylation of (7-aza) isatylidene malononitriles with α’-alkylidene-2-cyclohexenones. Adv. Synth. Catal. 2020, 362, 4438–4443; (c) Jiang, Y.; Yang, Y.; He, Q.; Du, W.; Chen, Y.-C. Asymmetric intramolecular Rauhut-Currier reaction and its desymmetric version via double thiol/phase-transfer catalysis. J. Org. Chem. 2020, 85, 10760–10771.