Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds†
Bing-Chao Da
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
‡ These authors contributed equally.
† Dedicated to Department of Chemistry, SUSTech, on the Occasion of Her 10th Anniversary.
Search for more papers by this authorShao-Hua Xiang
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
‡ These authors contributed equally.
† Dedicated to Department of Chemistry, SUSTech, on the Occasion of Her 10th Anniversary.
Search for more papers by this authorShaoyu Li
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
‡ These authors contributed equally.
† Dedicated to Department of Chemistry, SUSTech, on the Occasion of Her 10th Anniversary.
Search for more papers by this authorCorresponding Author
Bin Tan
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]Search for more papers by this authorBing-Chao Da
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
‡ These authors contributed equally.
† Dedicated to Department of Chemistry, SUSTech, on the Occasion of Her 10th Anniversary.
Search for more papers by this authorShao-Hua Xiang
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
‡ These authors contributed equally.
† Dedicated to Department of Chemistry, SUSTech, on the Occasion of Her 10th Anniversary.
Search for more papers by this authorShaoyu Li
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
‡ These authors contributed equally.
† Dedicated to Department of Chemistry, SUSTech, on the Occasion of Her 10th Anniversary.
Search for more papers by this authorCorresponding Author
Bin Tan
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]Search for more papers by this authorAbstract
The well-defined conformational properties of axially chiral compounds bring extraordinary values to an assortment of bioactive molecules, advanced materials, organocatalysts as well as chiral ligands in asymmetric transformations. The demonstrated usefulness and untapped potential of axially chiral structural motifs stimulate increasing efforts to develop novel and efficient approaches for their preparation. In this regard, the chiral phosphoric acids broadly used in asymmetric Brønsted acid catalysis have shown high relevance for atroposelective synthesis as well. Our strong interest in reaction chemistry of atropisomers has established a rewarding research programme in our group. The course of studies will be recounted in this Account, with discussion focused on the use of chiral phosphoric acids to catalyze construction of several key axially chiral structures such as BINAM, BINOL, NOBIN, arylquinones, SPINOL, arylpyrrole analogues and axially chiral alkenes.
What is the most favorite and original chemistry developed in your research group?
Organocatalytic asymmetric arene C—H functionalization.
What is the most important personality for scientific research?
Persistence, smart thinking.
What are your hobbies?
Playing basketball, playing card.
What's your favorite book(s)?
The Ordinary World by the famous Chinese writer Yao Lu.
Who influences you mostly in your life?
My parents and my supervisors Prof. Guofu Zhong and Carlos F. Barbas III.
How do you supervise your students?
I advise my students to work smartly and work hard.
References
- 1(a) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 2005, 44, 5384–5427; (b) Ogasawara, M. Catalytic enantioselective synthesis of axially chiral allenes. Tetrahedron: asymmetry 2009, 20, 259–271; (c) Bringmann, G.; Gulder, T.; Gulder, T. A.; Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 2011, 111, 563–639; (d) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 2015, 115, 11239–11300; (e) Wencel-Delord, J.; Panossian, A.; Leroux, F. R. Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 2015, 44, 3418–3430; (f) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev. 2016, 308, 131–190; (g) Renzi, P. Organocatalytic synthesis of axially chiral atropisomers. Org. Biomol. Chem. 2017, 15, 4506–4516; (h) Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C–H functionalization. Chem. Commun. 2019, 55, 8514–8523; (i) Zilate, B.; Castrogiovanni, A.; Sparr, C. Catalyst-controlled stereoselective synthesis of atropisomers. ACS Catal. 2018, 8, 2981–2988; (j) Corti, V.; Bertuzzi, G. Organocatalytic asymmetric methodologies towards the synthesis of atropisomeric N-heterocycles. Synthesis 2020, 52, 2450–2468.
- 2(a) Sigman, M.; Jacobsen, E. N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc. 1998, 120, 4901–4902;
(b) Enders, D.; Kallfass, U. An efficient nucleophilic carbene catalyst for the asymmetric benzoin condensation. Angew. Chem. Int. Ed. 2002, 41, 1743–1745;
10.1002/1521-3773(20020517)41:10<1743::AID-ANIE1743>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar(c) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A. A General organocatalyst for direct α-functionalization of aldehydes: stereoselective C-C, C-N, C-F, C-Br, and C-S bond-forming reactions. Scope and mechanistic insights. J. Am. Chem. Soc. 2005, 127, 18296–18304; (d) Taylor, M. S.; Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. 2006, 45, 1520–1543; (e) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Asymmetric enamine catalysis. Chem. Rev. 2007, 107, 5471–5569; (f) Shirakawa, S.; Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 2013, 52, 4312–4348; (g) MacMillan, D. W. C. The advent and development of organocatalysis. Nature 2008, 455, 304–308; (h) Xiang, S.-H.; Tan, B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun. 2020, 11, 3786.
- 3 Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 2004, 43, 1566–1568.
- 4 Uraguchi, D.; Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 2004, 126, 5356–5357.
- 5For representative reviews, see (a) Akiyama, T. Stronger Brønsted acids. Chem. Rev. 2007, 107, 5744–5758; (b) Terada, M. Binaphthol- derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chem. Commun. 2008, 4097–4112; (c) Terada, M. Chiral phosphoric acids as versatile catalysts for enantioselective transformations. Synthesis 2010, 2010, 1929–1982; (d) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chiral Brønsted acids in enantioselective carbonyl activations–activation modes and applications. Chem. Soc. Rev. 2011, 40, 4539–4549; (e) Terada, M. Enantioselective carbon-carbon bond forming reactions catalyzed by chiral phosphoric acid catalysts. Curr. Org. Chem. 2011, 15, 2227–2256; (f) Akiyama, T.; Mori, K. Stronger brønsted acids: recent progress. Chem. Rev. 2015, 115, 9277–9306; (g) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chiral phosphoric acid catalysis: from numbers to insights. Chem. Soc. Rev. 2018, 47, 1142–1158; (h) Xia, Z.-L.; Xu-Xu, Q.-F.; Zheng, C.; You, S.-L. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chem. Soc. Rev. 2020, 49, 286–300; (i) Li, S.; Xiang, S.-H.; Tan, B. Chiral phosphoric acid creates promising opportunities for enantioselective photoredox catalysis. Chin. J. Chem. 2020, 38, 213–214; for selected recent examples, see (j) Hashimoto, T.; Kimura, H.; Kawamata, Y.; Maruoka, K. Generation and exploitation of acyclic azomethine imines in chiral Brønsted acid catalysis. Nat. Chem. 2011, 3, 642–646; (k) Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F. D. Asymmetric additions to dienes catalysed by a dithiophosphoric acid. Nature 2011, 470, 245–249; (l) Čorić, I.; List, B. Asymmetric spiroacetalization catalysed by confined Brønsted acid. Nature 2012, 483, 315–319; (m) Bae, H.-Y.; Höfler, D.; Kaib, P. S. J.; Kasaplar, P.; De, C. K.; Döhring A.; Lee, S.; Kaupmees, K.; Leito, I.; List, B. Approaching sub-ppm-level asymmetric organocatalysis of a highly challenging and scalable carbon-carbon bond forming reaction. Nat. Chem. 2018, 10, 888–894; (n) Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prévost, S.; Kaib, P. S. J.; Bykov, D.; Farès, C.; List, B. Activation of olefins via asymmetric Brønsted acid catalysis. Science 2018, 359, 1501–1505; (o) Zhang, J.; Yu, P.; Li, S.-Y.; Sun, H.; Xiang, S.-H.; Wang, J.; Houk, K. N.; Tan, B. Asymmetric phosphoric acid–catalyzed four-component Ugi reaction. Science 2018, 361, eaas8707; (p) Schreyer, L.; Kaib, P. S. J.; Wakchaure, V. N.; Obradors, C.; Properzi, R.; Lee, S.; List, B. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 2018, 362, 216–219; (q) Zhang, J.; Wang, Y.-Y.; Sun, H.; Li, S.-Y.; Xiang, S.-H.; Tan, B. Enantioselective three-component Ugi reaction catalyzed by chiral phosphoric acid. Sci. China Chem. 2020, 63, 47–54.
- 6 Wang, Y.-B.; Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 2018, 51, 534–547.
- 7(a) Zheng, S.-C.; Wu, S.; Zhou, Q.; Chung, L. W.; Ye, L.; Tan, B. Organocatalytic atroposelective synthesis of axially chiral styrenes. Nat. Commun. 2017, 8, 15238; (b) Wang, Y.-B.; Wu, Q.-H.; Zhou, Z.-P.; Xiang, S.-H.; Cui, Y.; Yu, P.; Tan, B. Asymmetric construction of axially chiral 2-arylpyrroles by chirality transfer of atropisomeric alkenes. Angew. Chem. Int. Ed. 2019, 58, 13443–13447.
- 8(a) Li, S.; Zhang, J.-W.; Li, X.-L.; Cheng, D.-J.; Tan, B. Phosphoric acid-catalyzed asymmetric synthesis of SPINOL derivatives. J. Am. Chem. Soc. 2016, 138, 16561–16566; (b) Wang, Y.-B.; Yu, P.; Zhou, Z.-P.; Zhang, J.; Wang, J.; Luo, S.-H.; Gu, Q.-S.; Houk, K.; Tan, B. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nat. Catal. 2019, 2, 504–513.
- 9 Cheng, D.-J.; Yan, L.; Tian, S.-K.; Wu, M.-Y.; Wang, L.-X.; Fan, Z.-L.; Zheng, S.-C.; Liu, X.-Y.; Tan, B. Highly enantioselective kinetic resolution of axially chiral BINAM derivatives catalyzed by a Brønsted acid. Angew. Chem. Int. Ed. 2014, 53, 3684–3687.
- 10 De, C. K.; Pesciaioli, F.; List, B. Catalytic asymmetric benzidine rearrangement. Angew. Chem. Int. Ed. 2013, 52, 9293–9295.
- 11 Li, G.-Q.; Gao, H.; Keene, C.; Devonas, M.; Ess, D. H.; Kürti, L. Organocatalytic aryl–aryl bond formation: an atroposelective [3, 3]-rearrangement approach to BINAM derivatives. J. Am. Chem. Soc. 2013, 135, 7414–7417.
- 12(a) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B.; Zhou, Y.-G. Kinetic resolution of axially chiral 5- or 8-substituted quinolines via asymmetric transfer hydrogenation. J. Am. Chem. Soc. 2016, 138, 10413–10416; (b) Lu, S.; Ng, S. V. H.; Lovato, K.; Ong, J.-Y.; Poh, S.-B.; Ng, X. Q.; Kürti, L.; Zhao, Y. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation. Nat. Commun. 2019, 10, 3061; (c) Jones, B. A.; Balan, T.; Jolliffe, J. D.; Campbell, C. D.; Smith, M. D. Practical and scalable kinetic resolution of BINOLs mediated by a chiral counterion. Angew. Chem. Int. Ed. 2019, 58, 4596–4600; (d) Qu, S.; Greenhalgh, M. D.; Smith, A. D. Isothiourea-catalysed regioselective acylative kinetic resolution of axially chiral biaryl diols. Chem. Eur. J. 2019, 25, 2816–2823; (e) Liu, W.; Jiang, Q.; Yang, X. A versatile method for kinetic resolution of protecting-group-free BINAMs and NOBINs through chiral phosphoric acid catalyzed triazane formation. Angew. Chem. Int. Ed. 2020, 59, 23598–23602.
- 13 Qi, L.-W.; Li, S.; Xiang, S.-H.; Wang, J.; Tan, B. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy. Nat. Catal. 2019, 2, 314–323.
- 14 Yan, S.; Xia, W.; Li, S.; Song, Q.; Xiang, S.-H.; Tan, B. Michael reaction inspired atroposelective construction of axially chiral biaryls. J. Am. Chem. Soc. 2020, 142, 7322–7327.
- 15 Ding, W.-Y.; Yu, P.; An, Q.-J.; Bay, K. L.; Xiang, S.-H.; Li, S.; Chen, Y.; Houk, K.; Tan, B. DFT-guided phosphoric-acid-catalyzed atroposelective arene functionalization of nitrosonaphthalene. Chem 2020, 6, 2046–2059.
- 16 Zhang, J.-W.; Qi, L.-W.; Li, S.; Xiang, S.-H.; Tan, B. Direct construction of NOBINs via domino arylation and sigmatropic rearrangement reactions. Chin. J. Chem. 2020, 38, 1503–1514.
- 17(a) Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. The rational design of novel chiral oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols. Chem. Commun. 2002, 914–915; (b) Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C. Mechanistic study of asymmetric oxidative biaryl coupling: evidence for self-processing of the copper catalyst to achieve control of oxidase vs oxygenase activity. J. Am. Chem. Soc. 2008, 130, 12232–12233; (c) Egami, H.; Katsuki, T. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2-naphthols. J. Am. Chem. Soc. 2009, 131, 6082–6083; (d) Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. Enantioenriched synthesis of C1-symmetric BINOLs: iron-catalyzed cross-coupling of 2-naphthols and some mechanistic insight. J. Am. Chem. Soc. 2010, 132, 13633–13635; (e) Narute, S.; Parnes, R.; Toste, F. D.; Pappo, D. Enantioselective oxidative homocoupling and cross-coupling of 2-naphthols catalyzed by chiral iron phosphate complexes. J. Am. Chem. Soc. 2016, 138, 16553–16560; (f) Tian, J.-M.; Wang, A.-F.; Yang, J.-S.; Zhao, X.-J.; Tu, Y.-Q.; Zhang, S.-Y.; Chen, Z.-M. Copper-complex-catalyzed asymmetric aerobic oxidative cross-coupling of 2-naphthols: Enantioselective synthesis of 3, 3’-substituted C1-symmetric BINOLs. Angew. Chem. Int. Ed. 2019, 58, 11023–11027.
- 18 Chen, Y.-H.; Cheng, D.-J.; Zhang, J.; Wang, Y.; Liu, X.-Y.; Tan, B. Atroposelective synthesis of axially chiral biaryldiols via organocatalytic arylation of 2-naphthols. J. Am. Chem. Soc. 2015, 137, 15062–15065.
- 19 Moliterno, M.; Cari, R.; Puglisi, A.; Antenucci, A.; Sperandio, C.; Moretti, E.; Di Sabato, A.; Salvio, R.; Bella, M. Quinine-catalyzed asymmetric synthesis of 2,2’-binaphthol-type biaryls under mild reaction conditions. Angew. Chem. Int. Ed. 2016, 55, 6525–6529.
- 20 Shugrue, C. R.; Miller, S. J. Phosphothreonine as a catalytic residue in peptide-mediated asymmetric transfer hydrogenations of 8-aminoquinolines. Angew. Chem. Int. Ed. 2015, 54, 11173–11176.
- 21 Wang, J.-Z.; Zhou, J.; Xu, C.; Sun, H.; Kürti, L.; Xu, Q.-L. Symmetry in cascade chirality-transfer processes: a catalytic atroposelective direct arylation approach to BINOL derivatives. J. Am. Chem. Soc. 2016, 138, 5202–5205.
- 22 Chen, Y.-H.; Qi, L.-W.; Fang, F.; Tan, B. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols. Angew. Chem. Int. Ed. 2017, 56, 16308–16312.
- 23 Lu, D.-L.; Chen, Y.-H.; Xiang, S.-H.; Yu, P.; Tan, B.; Li, S. Atroposelective construction of arylindoles by chiral phosphoric acid-catalyzed cross-coupling of indoles and quinones. Org. Lett. 2019, 21, 6000–6004.
- 24 Liu, J.-Y.; Yang, X.-C.; Liu, Z.; Luo, Y.-C.; Lu, H.; Gu, Y.-C.; Fang, R.; Xu, P.-F. An atropo-enantioselective synthesis of benzo-linked axially chiral indoles via hydrogen-bond catalysis. Org. Lett. 2019, 21, 5219–5224.
- 25 Zhang, L.; Zhang, J.; Ma, J.; Cheng, D.-J.; Tan, B. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal-Knorr reaction. J. Am. Chem. Soc. 2017, 139, 1714–1717.
- 26 Wang, L.; Zhong, J.; Lin, X. Atroposelective phosphoric acid catalyzed three-component cascade reaction: enantioselective synthesis of axially chiral N-arylindoles. Angew. Chem. Int. Ed. 2019, 58, 15824–15828.
- 27 Zhang, L.; Xiang, S.-H.; Wang, J.; Xiao, J.; Wang, J.-Q.; Tan, B. Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles. Nat. Commun. 2019, 10, 566.
- 28 Wang, Y.-B.; Zheng, S.-C.; Hu, Y.-M.; Tan, B. Bronsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. Nat. Commun. 2017, 8, 15489.
- 29(a) Kwon, Y.; Chinn, A. J.; Kim, B.; Miller, S. J. Divergent control of point and axial stereogenicity: catalytic enantioselective C-N bond-forming cross-coupling and catalyst-controlled atroposelective cyclodehydration. Angew. Chem. Int. Ed. 2018, 57, 6251–6255; (b) Kwon, Y.; Li, J.; Reid, J. P.; Crawford, J. M.; Jacob, R.; Sigman, M. S.; Toste, F. D.; Miller, S. J. Disparate catalytic scaffolds for atroposelective cyclodehydration. J. Am. Chem. Soc. 2019, 141, 6698–6705.
- 30 Zhang, L.; Shen, J.; Wu, S.; Zhong, G.; Wang, Y.-B.; Tan, B. Design and atroposelective construction of IAN analogues by organocatalytic asymmetric heteroannulation of alkynes. Angew. Chem. Int. Ed. 2020, 59, 23077–23082.
- 31 Peng, L.; Li, K.; Xie, C.; Li, S.; Xu, D.; Qin, W.; Yan, H. Organocatalytic asymmetric annulation of ortho-alkynylanilines: synthesis of axially chiral naphthyl-C2-indoles. Angew. Chem. Int. Ed. 2019, 58, 17199–17204.
- 32 Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat. Chem. 2018, 10, 58–64.
- 33(a) Poulsen, T. B.; Alemparte, C.; Jørgensen, K. A. Enantioselective organocatalytic allylic amination. J. Am. Chem. Soc. 2005, 127, 11614–11615; (b) Collet, F.; Lescot, C.; Dauban, P. Catalytic C–H amination: the stereoselectivity issue. Chem. Soc. Rev 2011, 40, 1926–1936; (c) Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.; Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem 2017, 9, 629–634; (d) Bai, H.-Y.; Tan, F.-X.; Liu, T.-Q.; Zhu, G.-D.; Tian, J.-M.; Ding, T.-M.; Chen, Z.-M.; Zhang, S.-Y. Highly atroposelective synthesis of nonbiaryl naphthalene-1,2-diamine N–C atropisomers through direct enantioselective C–H amination. Nat. Commun. 2019, 10, 3063.
- 34 Xia, W.; An, Q.-J.; Xiang, S.-H.; Li, S.; Wang, Y.-B.; Tan, B. Chiral phosphoric acid catalyzed atroposelective C–H amination of arenes. Angew. Chem. Int. Ed. 2020, 59, 6775–6779.
- 35(a)Yuan, H.; Li, Y.; Zhao, H.; Yang, Z.; Li, X.; Li, W. Asymmetric synthesis of atropisomeric pyrazole via an enantioselective reaction of azonaphthalene with pyrazolone. Chem. Commun. 2019, 55, 12715–12718; (b) Hu, Y.-L.; Wang, Z.; Yang, H.; Chen, J.; Wu, Z.-B.; Lei, Y.; Zhou, L. Conversion of two stereocenters to one or two chiral axes: atroposelective synthesis of 2, 3-diarylbenzoindoles. Chem. Sci. 2019, 10, 6777–6784.
- 36For selected examples, see (a) Brandes, S.; Bella, M.; Kjærsgaard, A.; Jørgensen, K. A. Chirally aminated 2-naphthols—organocatalytic synthesis of non-biaryl atropisomers by asymmetric Friedel–Crafts amination. Angew. Chem. Int. Ed. 2006, 45, 1147–1151; (b) Brandes, S.; Niess, B.; Bella, M.; Prieto, A.; Overgaard, J.; Jørgensen, K. A. Non-biaryl atropisomers in organocatalysis. Chem. Eur. J. 2006, 12, 6039–6052; (c) Frey, J.; Malekafzali, A.; Delso, I.; Choppin, S.; Colobert, F.; Wencel-Delord, J. Enantioselective synthesis of N–C axially chiral compounds by Cu-catalyzed atroposelective aryl amination. Angew. Chem. Int. Ed. 2020, 59, 8844–8848; (d) Wang, C.-S.; Li, T.-Z.; Liu, S.-J.; Zhang, Y.-C.; Deng, S.; Jiao, Y.; Shi, F. Axially chiral aryl-alkene-indole framework: a nascent member of the atropisomeric family and its catalytic asymmetric construction. Chin. J. Chem. 2020, 38, 543–552.
- 37 Zhang, J.-W.; Xu, J.-H.; Cheng, D.-J.; Shi, C.; Liu, X.-Y.; Tan, B. Discovery and enantiocontrol of axially chiral urazoles via organocatalytic tyrosine click reaction. Nat. Commun. 2016, 7, 10677.
- 38 Zhang, L.-L.; Zhang, J.-W.; Xiang, S.-H.; Guo, Z.; Tan, B. Remote control of axial chirality: synthesis of spirooxindole–urazoles via desymmetrization of ATAD. Org. Lett. 2018, 20, 6022–6026.
- 39(a) Jia, S.; Chen, Z.; Zhang, N.; Tan, Y.; Liu, Y.; Deng, J.; Yan, H. Organocatalytic enantioselective construction of axially chiral sulfone- containing styrenes. J. Am. Chem. Soc. 2018, 140, 7056–7060; (b) Li, S.; Xu, D.; Hu, F.; Li, D.; Qin, W.; Yan, H. Organocatalytic asymmetric atroposelective construction of axially chiral 1,4-distyrene 2,3-naphthalene diols. Org. Lett. 2018, 20, 7665–7669; (c) Tan, Y.; Jia, S.; Hu, F.; Liu, Y.; Peng, L.; Li, D.; Yan, H. Enantioselective construction of vicinal diaxial styrenes and multiaxis system via organocatalysis. J. Am. Chem. Soc. 2018, 140, 16893–16898; (d) Huang, A.; Zhang, L.; Li, D.; Liu, Y.; Yan, H.; Li, W. Asymmetric one-pot construction of three stereogenic elements: chiral carbon center, stereoisomeric alkenes, and chirality of axial styrenes. Org. Lett. 2019, 21, 95–99.
- 40 Li, Q.-Z.; Lian, P.-F.; Tan, F.-X.; Zhu, G.-D.; Chen, C.; Hao, Y.; Jiang, W.; Wang, X.-H.; Zhou, J.; Zhang, S.-Y. Organocatalytic enantioselective construction of heterocycle-substituted styrenes with chiral atropisomerism. Org. Lett. 2020, 22, 2448–2453.
- 41 Zhu, S.; Chen, Y.-H.; Wang, Y.-B.; Yu, P.; Li, S.-Y.; Xiang, S.-H.; Wang, J-Q.; Xiao, J.; Tan, B. Organocatalytic atroposelective construction of axially chiral arylquinones. Nat. Commun. 2019, 10, 4268.
- 42 Chen, Y.-H.; Li, H.-H.; Zhang, X.; Xiang, S.-H.; Li, S.; Tan, B. Organocatalytic enantioselective synthesis of atropisomeric aryl-p-quinones: platform molecules for diversity-oriented synthesis of biaryldiols. Angew. Chem. Int. Ed. 2020, 59, 11374–11378.