Recent Advances in Pt-Based Ultrathin Nanowires: Synthesis and Electrocatalytic Applications†
Yu Wang
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
‡ These authors contributed equally to this work.
Search for more papers by this authorYuliang Yuan
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
‡ These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Hongwen Huang
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
E-mail: [email protected]Search for more papers by this authorYu Wang
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
‡ These authors contributed equally to this work.
Search for more papers by this authorYuliang Yuan
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
‡ These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Hongwen Huang
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
E-mail: [email protected]Search for more papers by this authorDedicated to the special issue of Nanostructured Materials for Electrochemical Energy Conversion and Storage.
Abstract
Electrochemical energy conversion devices, with typical examples of fuel cells, are the centers in building a sustainable energy system that avoids environmental pollution and lowers the dependence on fossil fuels. Platinum (Pt)-based catalysts are among the most potential candidates to drive these reactions due to their superior catalytic performance. Among the various Pt-based catalysts, Pt-based ultrathin nanowires exhibit remarkable catalytic performance due to the unique structural merits (i.e., high Pt atom utilization and strong interaction with supports). In this review, we attempt to summarize the recent advances in the synthesis of Pt-based ultrathin nanowires, as well as their applications in various kinds of electrocatalytic reactions. We conclude this review with an emphasis on the current challenges in terms of synthesis and applications of Pt-based ultrathin nanowires. Perspectives on further development are also proposed, which is expected to guide the related research in the future.
References
- 1 Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.
- 2 Li, M.; Yuan, Y.; Yao, Z.; Gao, L.; Zhang, J.; Huang, H. Applications of Metal Nanocrystals with Twin Defects in Electrocatalysis. Chem. Asian J. 2020, 15, 3254–3265.
- 3 Liu, Y.; Xiao, C.; Huang, P.; Cheng, M.; Xie, Y. Regulating the Charge and Spin Ordering of Two-dimensional Ultrathin Solids for Electrocatalytic Water Splitting. Chem 2018, 4, 1263–1283.
- 4 Jiao, S.; Fu, X.; Zhang, L.; Zeng, Y.-J.; Huang, H. Point-Defect-Optimized Electron Distribution for Enhanced Electrocatalysis: Towards the Perfection of the Imperfections. Nano Today 2020, 31, 100833.
- 5 Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction Through Combining Experiment and Theory. Angew. Chem. Int. Ed. 2015, 54, 52–65.
- 6 Li, X.; Li, X.; Liu, C.; Huang, H.; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.; Yang, J.; Zeng, J. Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface Toward Highly Efficient Oxygen Reduction Electrocatalysis. Nano Lett. 2020, 20, 1403–1409.
- 7 Alia, S. M.; Ha, M.-A.; Ngo, C.; Anderson, G. C.; Ghoshal, S.; Pylypenko, S. Platinum–Nickel Nanowires with Improved Hydrogen Evolution Performance in Anion Exchange Membrane-Based Electrolysis. ACS Catal. 2020, 10, 9953–9966.
- 8 Li, H.; Pan, Y.; Zhang, D.; Han, Y.; Wang, Z.; Qin, Y.; Lin, S.; Wu, X.; Zhao, H.; Lai, J.; Huang, B.; Wang, L. Surface Oxygen-Mediated Ultrathin PtRuM (Ni, Fe, and Co) Nanowires Boosting Methanol Oxidation Reaction. J. Mater. Chem. A 2020, 8, 2323–2330.
- 9 Mao, J.; Chen, W.; He, D.; Wan, J.; Pei, J.; Dong, J.; Wang, Y.; An, P.; Jin, Z.; Xing, W. Design of Ultrathin Pt-Mo-Ni Nanowire Catalysts for Ethanol Electrooxidation. Sci. Adv. 2017, 3, e1603068.
- 10 Li, Z.; Qiu, G.; Shen, Y.; Wang, X.; Zhuang, W.; Li, J.; Song, M.; Wang, P.; Tian, L. Ultrafine Trimetallic Oxyphosphide Nanoparticles for Efficient Electrochemical Overall Water Splitting. J. Alloys Compd. 2020, 820, 153161.
- 11 Xu, Y.; Zhang, B. Recent Advances in Porous Pt-Based Nanostructures: Synthesis and Electrochemical Applications. Chem. Soc. Rev. 2014, 43, 2439–2450.
- 12 Oezaslan, M.; Hasché, F.; Strasser, P. Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes. J. Phys. Chem. Lett. 2013, 4, 3273–3291.
- 13 Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts. Adv. Mater. 2019, 31, 1802234.
- 14 Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem. Rev. 2015, 115, 3433–3467.
- 15 Guo, S.; Zhang, S.; Sun, S. Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52, 8526–8544.
- 16 Nie, Y.; Li, L.; Wei, Z. Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.
- 17 Chen, Z.; Waje, M.; Li, W.; Yan, Y. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-reduction Reactions. Angew. Chem. Int. Ed. 2007, 46, 4060–4063.
- 18 Koenigsmann, C.; Wong, S. S. One-Dimensional Noble Metal Electrocatalysts: A Promising Structural Paradigm for Direct Methanol Fuel Cells. Energy Environ. Sci. 2011, 4, 1161–1176.
- 19 Bu, L.; Guo, S.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J.; Guo, J.; Huang, X. Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis. Nat. Commun. 2016, 7, 11850.
- 20 Huang, H.; Ruditskiy, A.; Choi, S. I.; Zhang, L.; Liu, J.; Ye, Z.; Xia, Y. One-Pot Synthesis of Penta-Twinned Palladium Nanowires and Their Enhanced Electrocatalytic Properties. ACS Appl. Mater. Interfaces 2017, 9, 31203–31212.
- 21 Guo, S.; Li, D.; Zhu, H.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52, 3465–3468.
- 22 Jiang, K.; Bu, L.; Wang, P.; Guo, S.; Huang, X. Trimetallic PtSnRh Wavy Nanowires as Efficient Nanoelectrocatalysts for Alcohol Electrooxidation. ACS Appl. Mater. Interfaces 2015, 7, 15061–15067.
- 23 Luo, M.; Sun, Y.; Zhang, X.; Qin, Y.; Li, M.; Li, Y.; Li, C.; Yang, Y.; Wang, L.; Gao, P.; Lu, G.; Guo, S. Stable High-Index Faceted Pt Skin on Zigzag-Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. Adv. Mater. 2018, 30, 1705515.
- 24 Huang, L.; Han, Y.; Zhang, X.; Fang, Y.; Dong, S. One-step Synthesis of Ultrathin PtxPb Nerve-like Nanowires as Robust Catalysts for Enhanced Methanol Electrooxidation. Nanoscale 2017, 9, 201–207.
- 25 Xu, H.; Shang, H.; Wang, C.; Du, Y. Ultrafine Pt-Based Nanowires for Advanced Catalysis. Adv. Funct. Mater. 2020, 30, 2000793.
- 26 Kang, Y.; Pyo, J. B.; Ye, X.; Gordon, T. R.; Murray, C. B. Synthesis, Shape Control, and Methanol Electro-oxidation Properties of Pt–Zn Alloy and Pt3Zn Intermetallic Nanocrystals. ACS Nano 2012, 6, 5642–5647.
- 27 Huo, D.; Kim, M. J.; Lyu, Z.; Shi, Y.; Wiley, B. J.; Xia, Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem. Rev. 2019, 119, 8972–9073.
- 28 Fan, X.; Luo, S.; Zhao, X.; Wu, X.; Luo, Z.; Tang, M.; Chen, W.; Song, X.; Quan, Z. One-nanometer-Thick Platinum-Based Nanowires with Controllable Surface Structures. Nano Res. 2019, 12, 1721–1726.
- 29 Gao, L.; Li, X.; Yao, Z.; Bai, H.; Lu, Y.; Ma, C.; Lu, S.; Peng, Z.; Yang, J.; Pan, A.; Huang, H. Unconventional p-d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.
- 30 Shao, Q.; Lu, K.; Huang, X. Platinum Group Nanowires for Efficient Electrocatalysis. Small Methods 2019, 3, 1800545.
- 31 Huang, X.; Zhao, Z.; Chen, Y.; Chiu, C. Y.; Ruan, L.; Liu, Y.; Li, M.; Duan, X.; Huang, Y. High Density Catalytic Hot Spots in Ultrafine Wavy Nanowires. Nano Lett. 2014, 14, 3887–3894.
- 32 Niu, Z.; Li, Y. Removal and Utilization of Capping Agents in Nanocatalysis. Chem. Mater. 2013, 26, 72–83.
- 33
Ma, Y.; Gao, W.; Shan, H.; Chen, W.; Shang, W.; Tao, P.; Song, C.; Addiego, C.; Deng, T.; Pan, X.; Wu, J. Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment. Adv. Mater. 2017, 29, 1703460.
10.1002/adma.201703460 Google Scholar
- 34 Gong, M.; Deng, Z.; Xiao, D.; Han, L.; Zhao, T.; Lu, Y.; Shen, T.; Liu, X.; Lin, R.; Huang, T.; Zhou, G.; Xin, H.; Wang, D. One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catal. 2019, 9, 4488–4494.
- 35 Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.-Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B. V.; Lin, Z. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science 2016, 354, 1414–1419.
- 36 Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. Stabilization of Platinum Oxygen-reduction Electrocatalysts Using Gold Clusters. Science 2007, 315, 220–222.
- 37 Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R. E.; Willinger, M. G.; Strasser, P. Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation Between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. Nano. Lett. 2016, 16, 1719–1725.
- 38 Huang, H.; Li, K.; Chen, Z.; Luo, L.; Gu, Y.; Zhang, D.; Ma, C.; Si, R.; Yang, J.; Peng, Z.; Zeng, J. Achieving Remarkable Activity and Durability Toward Oxygen Reduction Reaction Based on Ultrathin Rh-Doped Pt Nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.
- 39 Lin, R.; Cai, X.; Zeng, H.; Yu, Z. Stability of High-Performance Pt-Based Catalysts for Oxygen Reduction Reactions. Adv. Mater. 2018, 30, 1705332.
- 40 Greeley, J.; Stephens, I. E.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts. Nat. Chem. 2009, 1, 552–556.
- 41 Li, K.; Li, X.; Huang, H.; Luo, L.; Li, X.; Yan, X.; Ma, C.; Si, R.; Yang, J.; Zeng, J. One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantages into One Catalyst. J. Am. Chem. Soc. 2018, 140, 16159–16167.
- 42 Jiang, K.; Zhao, D.; Guo, S.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Efficient Oxygen Reduction Catalysis by Subnanometer Pt Alloy Nanowires. Sci. Adv. 2017, 3, e1601705.
- 43 Jiao, S.; Yao, Z.; Xue, F.; Lu, Y.; Liu, M.; Deng, H.; Ma, X.; Liu, Z.; Ma, C.; Huang, H.; Ruan, S.; Zeng, Y.-J. Defect-Rich One-dimensional MoS2 Hierarchical Architecture for Efficient Hydrogen Evolution: Coupling of Multiple Advantages into One Catalyst. Appl. Catal. B: Environ. 2019, 258, 117964.
- 44 Tian, X.; Zhao, P.; Sheng, W. Hydrogen Evolution and Oxidation: Mechanistic Studies and Material Advances. Adv. Mater. 2019, 31, 1808066.
- 45 Wang, P.; Jiang, K.; Wang, G.; Yao, J.; Huang, X. Phase and Interface Engineering of Platinum-Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 12859–12863.
- 46 Wang, P.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S.; Lu, G.; Yao, J.; Huang, X. Precise Tuning in Platinum-Nickel/Nickel Sulfide Interface Nanowires for Synergistic Hydrogen Evolution Catalysis. Nat. Commun. 2017, 8, 14580.
- 47 Liu, Z.; Qi, J.; Liu, M.; Zhang, S.; Fan, Q.; Liu, H.; Liu, K.; Zheng, H.; Yin, Y.; Gao, C. Aqueous Synthesis of Ultrathin Platinum/Non-Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angew. Chem. Int. Ed. 2018, 57, 11678–11682.
- 48 Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot Synthesis of Pt-Co Alloy Nanowire Assemblies with Tunable Composition and Enhanced Electrocatalytic Properties. Angew. Chem. Int. Ed. 2015, 54, 3797–3801.
- 49 Liu, J.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.; Therrien, A. J.; Williams, C. T.; Sykes, E. C.; Flytzani-Stephanopoulos, M. Tackling CO Poisoning with Single-Atom Alloy Catalysts. J. Am. Chem. Soc. 2016, 138, 6396–6399.
- 50 Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S. Shape-Control of Pt-Ru Nanocrystals: Tuning Surface Structure for Enhanced Electrocatalytic Methanol Oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.
- 51 Gao, F.; Zhang, Y.; Ren, F.; Song, T.; Du, Y. Tiny Ir Doping of Sub-One-Nanometer PtMn Nanowires: Highly Active and Stable Catalysts for Alcohol Electrooxidation. Nanoscale 2020, 12, 12098–12105.
- 52 Zhu, Y.; Bu, L.; Shao, Q.; Huang, X. Subnanometer PtRh Nanowire with Alleviated Poisoning Effect and Enhanced C–C Bond Cleavage for Ethanol Oxidation Electrocatalysis. ACS Catal. 2019, 9, 6607–6612.