Bioinspired Activation of N2 on Asymmetrical Coordinated Fe Grafted 1T MoS2 at Room Temperature†
Jiaojiao Guo
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
These authors contribute equally to this work.
Search for more papers by this authorMaoyu Wang
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331 USA
These authors contribute equally to this work.
Search for more papers by this authorLiang Xu
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
These authors contribute equally to this work.
Search for more papers by this authorXiaomin Li
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240 China
These authors contribute equally to this work.
Search for more papers by this authorAsma Iqbal
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorGeorge E. Sterbinsky
Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60431 USA
Search for more papers by this authorHao Yang
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorMiao Xie
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Jiantao Zai
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Zhenxing Feng
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331 USA
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Tao Cheng
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorXuefeng Qian
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJiaojiao Guo
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
These authors contribute equally to this work.
Search for more papers by this authorMaoyu Wang
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331 USA
These authors contribute equally to this work.
Search for more papers by this authorLiang Xu
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
These authors contribute equally to this work.
Search for more papers by this authorXiaomin Li
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240 China
These authors contribute equally to this work.
Search for more papers by this authorAsma Iqbal
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorGeorge E. Sterbinsky
Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60431 USA
Search for more papers by this authorHao Yang
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorMiao Xie
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Jiantao Zai
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Zhenxing Feng
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331 USA
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Tao Cheng
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorXuefeng Qian
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this author† Dedicated to Professor Yitai Qian on the Occasion of His 80th Birthday.
Main observation and conclusion
Inspired by the nitrogen fixation process on MoFe nitrogenase, asymmetrical coordinated Fe grafted onto 1T MoS2 were successfully synthesized. The unique electron-rich structure with asymmetrical coordination made the 1T Fe0.1Mo0.9S2 layered material actively react with water and dinitrogen at room temperature and atmosphere pressure. Subsequently, ammonia can be produced with a yield of ~800 μmol (NH4+) g−1 (12.5% yield in mole). The activation, fixation and reduction of dinitrogen were confirmed by isotopically labeled experiments. The location and the specific coordination environment of grafted Fe in Fe-Mo-S were further determined by X-ray absorption spectroscopy analysis. Our work demonstrates that the nitrogen fixation and reduction for ammonia at room temperature without any chemical and electrochemical assistance is distinctly different from traditional bionic-inspired nitrogen fixation process. The mechanism of the activation and reduction of N2 was further investigated by density functional theory calculation and Raman spectra. Compared with 1T MoS2, the enriched electron nature and asymmetrical coordination of Fe in Fe-Mo-S materials play a critical role in the bioinspired activation of N2 at ambient condition.
Supporting Information
Filename | Description |
---|---|
cjoc202000675-sup-0001-Supinfo.pdfPDF document, 2 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Cui, X.; Tang, C.; Zhang, Q. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Adv. Energy Mater. 2018, 8, 1800369.
- 2 Chen, X.; Li, N.; Kong, Z.; Ong, W.-J.; Zhao, X. Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.
- 3 Medford, A. J.; Hatzell, M. C. Photon-Driven Nitrogen Fixation: Current Progress, Thermodynamic Considerations, and Future Outlook. ACS Catal. 2017, 7, 2624–2643.
- 4 Liu, Y.; Cheng, M.; He, Z.; Gu, B.; Xiao, C.; Zhou, T.; Guo, Z.; Liu, J.; He, H.; Ye, B.; Pan, B.; Xie, Y. Pothole-rich Ultrathin WO3 Nanosheets that Trigger N identical withN Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angew. Chem. Int. Ed. 2019, 58, 731–735.
- 5 Krewald, V. Dinitrogen photoactivation: status quo and future perspectives. Dalton Trans. 2018, 47 10320–10329.
- 6 Ithisuphalap, K.; Zhang, H.; Guo, L.; Yang, Q.; Yang, H.; Wu, G. Photocatalysis and Photoelectrocatalysis Methods of Nitrogen Reduction for Sustainable Ammonia Synthesis. Small Methods 2018, 3, 1800352.
- 7 Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.
- 8 Ogawa, T.; Kobayashi, Y.; Mizoguchi, H.; Kitano, M.; Abe, H.; Tada, T.; Toda, Y.; Niwa, Y.; Hosono, H. High Electron Density on Ru in Intermetallic YRu2: The Application to Catalyst for Ammonia Synthesis. J. Phys. Chem. C 2018, 122, 10468–10475.
- 9 Schlogl, R. Catalytic synthesis of ammonia - A "never-ending story"? Angew. Chem. Int. Ed. 2003, 42, 2004–2008.
- 10 Wang, P.; Chang, F.; Gao, W.; Guo, J.; Wu, G.; He, T.; Chen, P. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.
- 11 Ye, T.-N.; Li, J.; Kitano, M.; Hosono, H. Unique nanocages of 12CaO·7Al2O3 boost heterolytic hydrogen activation and selective hydrogenation of heteroarenes over ruthenium catalyst. Green Chem. 2017, 19, 749–756.
- 12 Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.
- 13 Hasegawa, G.; Moriya, S.; Inada, M.; Kitano, M.; Okunaka, M.; Yamamoto, T.; Matsukawa, Y.; Nishimi, K.; Shima, K.; Enomoto, N.; Matsuishi, S.; Hosono, H.; Hayashi, K. Topotactic Synthesis of Mesoporous 12CaO·7Al2O3 Mesocrystalline Microcubes toward Catalytic Ammonia Synthesis. Chem. Mater. 2018, 30, 4498–4502.
- 14 Hara, M.; Kitano, M.; Hosono, H. Ru-Loaded C12A7:e– Electride as a Catalyst for Ammonia Synthesis. ACS Catal. 2017, 7 2313–2324.
- 15 Lu, Y.; Li, J.; Tada, T.; Toda, Y.; Ueda, S.; Yokoyama, T.; Kitano, M.; Hosono, H. Water Durable Electride Y5Si3: Electronic Structure and Catalytic Activity for Ammonia Synthesis. J. Am. Chem. Soc. 2016, 138, 3970–3973.
- 16 Gong, Y.; Wu, J.; Kitano, M.; Wang, J.; Ye, T.-N.; Li, J.; Kobayashi, Y.; Kishida, K.; Abe, H.; Niwa, Y.; Yang, H.; Tada, T.; Hosono, H. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat. Catal. 2018, 1, 178–185.
- 17 Ohki, Y.; Uchida, K.; Tada, M.; Cramer, R. E.; Ogura, T.; Ohta, T. N2 activation on a molybdenum-titanium-sulfur cluster. Nat. Commun. 2018, 9 3200.
- 18 Morrison, C. N.; Spatzal, T.; Rees, D. C. Reversible Protonated Resting State of the Nitrogenase Active Site. J. Am. Chem. Soc. 2017, 139, 10856–10862.
- 19 Brown, K. A.; Harris, D. F.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C.; King, P. W. B. Light-driven dinitrogen reduction catalyzed by a CdS-nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.
- 20 Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84–87.
- 21 Spatzal, T.; Schlesier, J.; Burger, E. M.; Sippel, D.; Zhang, L.; Andrade, S. L.; Rees, D. C.; Einsle, O. Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat. Commun. 2016, 7, 10902.
- 22 MacLeod, K. C.; Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Chem. 2013, 5, 559–565.
- 23 Nishibayashi, Y. Nitrogen fixation: nitrido complexes step up. Nat. Chem. 2011, 3, 502–504.
- 24 Arashiba, K.; Eizawa, A.; Tanaka, H.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen-Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions. B. Chem. Soc. Jpn. 2017, 90, 1111–1118.
- 25 Ashida, Y.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 2019, 568, 536–540.
- 26 Dorr, M.; Kassbohrer, J.; Grunert, R.; Kreisel, G.; Brand, W. A.; Werner, R. A.; Geilmann, H.; Apfel, C.; Robl, C.; Weigand, W. Angew. Chem. Int. Ed. 2003, 42, 1540–1543.
- 27 Liu, J.; Kelley, M. S.; Wu, W.; Banerjee, A.; Douvalis, A. P.; Wu, J.; Zhang, Y.; Schatz, G. C.; Kanatzidis, M. G. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5530–5535.
- 28 Banerjee, A.; Yuhas, B. D.; Margulies, E. A.; Zhang, Y.; Shim, Y.; Wasielewski, M. R.; Kanatzidis, M. G. Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J. Am. Chem. Soc. 2015, 137, 2030–2034.
- 29 Azofra, L. M.; Sun, C. H.; Cavallo, L.; MacFarlane, D. R. Feasibility of N2 Binding and Reduction to Ammonia on Fe-Deposited MoS2 2D Sheets: A DFT Study. Chem.-Eur. J. 2017, 23, 8275–8279.
- 30 Sun, T.; Li, Z.; Liu, X.; Ma, L.; Wang, J.; Yang, S. Oxygen-incorporated MoS2 microspheres with tunable interiors as novel electrode materials for supercapacitors. J. Power Sources 2017, 352, 135–142.
- 31 Zhang, L.; Li, M.; Zou, A.; Yu, S. H.; Xiong, T.; Wang, L.; He, J.; Fu, Q.; Sun, K.; Chua, D. H. C.; Xue, J. Synergistically Configuring Intrinsic Activity and Fin-Tube-Like Architecture of Mn-Doped MoS2-Based Catalyst for Improved Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2018, 2, 493–502.
- 32 Zhang, H.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. D. Surface Modulation of Hierarchical MoS2 Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2018, 28, 1807086.
- 33 Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.
- 34 Ye, L.; Wu, C.; Guo, W.; Xie, Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chem. Commun. 2006, 4738–4740.
- 35 Druffel, D. L.; Kuntz, K. L.; Woomer, A. H.; Alcorn, F. M.; Hu, J.; Donley, C. L.; Warren, S. C. Experimental Demonstration of an Electride as a 2D Material. J. Am. Chem. Soc. 2016, 138, 16089–16094.
- 36 Lin, Z.; Liu, Y.; Halim, U.; Ding, M.; Liu, Y.; Wang, Y.; Jia, C.; Chen, P.; Duan, X.; Wang, C.; Song, F.; Li, M.; Wan, C.; Huang, Y.; Duan, X. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258.
- 37 Woods, J. M.; Jung, Y.; Xie, Y.; Liu, W.; Liu, Y.; Wang, H.; Cha, J. J. One-Step Synthesis of MoS2/WS2 Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films. ACS Nano 2016, 10, 2004–2009.
- 38 Zhang, N.; Surrente, A.; Baranowski, M.; Maude, D. K.; Gant, P.; Castellanos-Gomez, A.; Plochocka, P. Moiré Intralayer Excitons in a MoSe2/MoS2 Heterostructure. Nano Lett. 2018, 18, 7651–7657.
- 39 Lei, Z.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Adv. Energy Mater. 2018, 8, 1703482.
- 40 Jia, W.; Zhou, X.; Huang, Y.; Cao, Y.; Sun, Y.; Jia, D. Synthesis of Air-stable 1T Phase of Molybdenum Disulfide for Efficient Electrocata-lytic Hydrogen Evolution. ChemCatChem 2018, 11, 707–714.
- 41 Li, X.; Zai, J.; Xiang, S.; Liu, Y.; He, X.; Xu, Z.; Wang, K.; Ma, Z.; Qian, X. Regeneration of Metal Sulfides in the Delithiation Process: The Key to Cyclic Stability. Adv. Energy Mater. 2016, 6, 1601056.
- 42 Li, Y.; Zhang, H.; Jiang, M.; Kuang, Y.; Wang, H.; Sun, X. Amorphous Co–Mo–S ultrathin films with low-temperature sulfurization as high-performance electrocatalysts for the hydrogen evolution reac-tion. J. Mater. Chem. A 2016, 4, 13731–13735.
- 43 Dong, H.; Xu, Y.; Zhang, C.; Wu, Y.; Zhou, M.; Liu, L.; Dong, Y.; Fu, Q.; Wu, M.; Lei, Y. MoS2 nanosheets with expanded interlayer spacing for enhanced sodium storage. Inorg. Chem. Front. 2018, 5, 3099–3105.
- 44 Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experi-mental Studies. Adv. Mater. 2018, 30, 1800191.
- 45 Sun, S.; Li, X.; Wang, W.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B-Environ. 2017, 200, 323–329.
- 46 Andersen, S. Z.; Colic, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C. A rigorous electrochemical ammonia synthesis protocol with quan-titative isotope measurements. Nature 2019, 570, 504–508.
- 47 Hu, B.; Hu, M.; Seefeldt, L.; Liu, T. L. Electrochemical Dinitrogen Reduction to Ammonia by Mo2N: Catalysis or Decomposition? ACS Energy Lett. 2019, 4, 1053–1054.
- 48 Wang, M.; Árnadóttir, L.; Xu, Z. J.; Feng, Z. In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts. Nano-Micro Lett. 2019, 11, 47.
- 49 Feng, Z.; Ma, Q.; Lu, J.; Feng, H.; Elam, J. W.; Stair, P. C.; Bedzyk, M. J. Atomic-scale cation dynamics in a monolayer VOX/α-Fe2O3 catalyst. RSC Adv. 2015, 5, 103834–103840.
- 50 Chakravarty, S.; Kumar, N.; Panda, K.; Ravindran, T. R.; Panigrahi, B. K.; Dash, S.; Tyagi, A. K.; Amarendra, G. The influence of nitrogen concentration on microstructure and ultra-low friction behaviour of Fe–N thin films. Tribol. Int. 2014, 74, 62–71.