Electrochemical Palladium-Catalyzed Intramolecular C—H Amination of 2-Amidobiaryls for Synthesis of Carbazoles
Qingqing Wang
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorXiaojing Zhang
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorPan Wang
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorXinlong Gao
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Heng Zhang
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Aiwen Lei
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi, 330022 China
E-mail: [email protected], [email protected]Search for more papers by this authorQingqing Wang
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorXiaojing Zhang
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorPan Wang
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorXinlong Gao
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Heng Zhang
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Aiwen Lei
College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi, 330022 China
E-mail: [email protected], [email protected]Search for more papers by this authorMain observation and conclusion
The synthesis of carbazoles based on the electrochemical Pd-catalyzed intramolecular C—H amination of 2-amidobiaryls through oxidative cross coupling has been achieved under mild reaction conditions. The reaction can be carried out in undivided cell without the addition of external chemical oxidant. Besides good functional group compatibility, the desired carbazoles can be scaled up and modified easily. Compared with previous methods, this protocol affords a simple and sustainable avenue for the construction of carbazoles.
Supporting Information
Filename | Description |
---|---|
cjoc202000407-sup-0001-Supinfo.pdfPDF document, 4.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Kno ̈lker, H.-J.; Reddy, K. R. Isolation and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2002, 102, 4303–4428; (b) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193–3328.
- 2For some examples, see: (a) Justin Thomas, K. R.; Lin, J. T.; Tao, Y.-T.; Ko, C.-W. Light-Emitting Carbazole Derivatives: Potential Electroluminescent Materials. J. Am. Chem. Soc. 2001, 123, 9404–9411; (b) Li, J.; Grimsdale, A. C. Carbazole-based polymers for organic photovoltaic devices. Chem. Soc. Rev. 2010, 39, 2399–2410; (c) Seo, H.-J.; Song, M.; Jin, S.-H.; Choi, J. H.; Yun, S.; Kim, Y.-I. Blue phosphorescent iridium(III) complexes containing carbazole-functionalized phenylpyridine for organic light-emitting diodes: energy transfer from carbazolyl moieties to iridium(III) cores. RSC Adv. 2011, 1, 755–757; (d) Wong, W.-Y.; Ho, C.-L.; Gao, Z.-Q.; Mi, B.-X.; Chen, C.-H.; Cheah, K.-W.; Lin, Z. Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors. Angew. Chem. Int. Ed. 2006, 45, 7800–7803.
- 3(a) Knölker, H.-J.; Reddy, K. R. Isolation and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2002, 102, 4303–4428; (b) Bauer, I.; Knölker, H.-J. Synthesis of pyrrole and carbazole alkaloids. Top. Curr. Chem. 2012, 309, 203–253; (c) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2012, 112, 3193–3328; (d) Yoshikai, N.; Wei, Y. Synthesis of Pyrroles, Indoles, and Carbazoles through Transition-Metal-Catalyzed C–H Functionalization. Asian J. Org. Chem. 2013, 2, 466–478; (e) Durrell, A. C.; Jackson, M. N.; Hazari, N.; Gray, H. B. Making Carbon–Chlorine Bonds by Dipalladium Electrocatalysis. Eur. J. Inorg. Chem. 2013, 7, 71134–1137.
- 4For synthesis of carbazoles by transition-metal-catalyzed intramolecular C−H bond amination of N-substituted 2-amidobiaryls, see: (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. Combined C-H functionalization/C-N bond formation route to carbazoles. J. Am. Chem. Soc. 2005, 127, 14560–14561; (b) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. Oxidative Pd(II)-Catalyzed C−H Bond Amination to Carbazole at Ambient Temperature. J. Am. Chem. Soc. 2008, 130, 16184–16186; (c) Cho, S. H.; Yoon, J.; Chang, S. Intramolecular Oxidative C−N Bond Formation for the Synthesis of Carbazoles: Comparison of Reactivity between the Copper-Catalyzed and Metal-Free Conditions. J. Am. Chem. Soc. 2011, 133, 5996–6005; (d) Youn, S. W.; Bihn, J. H.; Kim, B. S. Pd-Catalyzed Intramolecular Oxidative C–H Amination: Synthesis of Carbazoles. Org. Lett. 2011, 13, 3738–3741; (e) Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of Carbazoles by Copper-Catalyzed Intramolecular C–H/N–H Coupling. Org. Lett. 2014, 16, 2892–2895; (f) Chng, L. L.; Yang, J.; Wei, Y.; Ying, J. Y. Palladium nanomaterials in catalytic intramolecular C–H amination reactions. Chem. Commun. 2014, 50, 9049–9052; (g) Suzuki, C.; Hirano, K.; Satoh, T.; Miura, M. Direct Synthesis of N-H Carbazoles via Iridium(III)-Catalyzed Intramolecular C–H Amination. Org. Lett. 2015, 17, 1597–1600; (h) Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Organocatalytic, Oxidative, Intramolecular C–H Bond Amination and Metal-free Cross-Amination of Unactivated Arenes at Ambient Temperature. Angew. Chem. Int. Ed. 2011, 50, 8605–8608.
- 5(a) Nokami, T. K.; Soma, R. J.; Yamamoto, Y. M.; Kamei, T. Y. K.; Yoshida, C. J. I. Electrochemical generation of 2,3-oxazolidinone glycosyl triflates as an intermediate for stereoselective glycosylation. Beilstein J. Org. Chem. 2012, 8, 456–460; (b) Jutand, A. Contribution of Itami, Contribution of Electrochemistry to Organometallic Catalysis. Chem. Rev. 2008, 108, 2300–2347; (c) Fu, N. K.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 2017, 357, 575–579; (d) Yoshida, J. I.; Shimizu, A.; Hayash, R. Electrogenerated Cationic Reactive Intermediates: The Pool Method and Further Advances. Chem. Rev. 2018, 118, 4702–4730; (e) Jiang, Y.-Y.; Xu, K.; Zeng, C.-C. Use of Electrochemistry in the Synthesis of Heterocyclic Structures. Chem. Rev. 2018, 118, 4485–4540; (f) Wang, Q.-Q.; Xu, K.; Jiang, Y.-Y.; Liu, Y.-G.; Sun, B.-G.; Zeng, C.-C. Electrocatalytic Minisci Acylation Reaction of N-Heteroarenes Mediated by NH4I. Org. Lett. 2017, 19, 5517–5520; (g) Huang, P.-F, Wang, P.; Wang, S.-C.; Tang, S.; Lei, A.-W. Electrochemical oxidative [4+2] annulation of tertiary anilines and alkenes for the synthesis of tetrahydroquinolines. Green Chem. 2018, 20, 4870–4874; (h) Wang, Q.-Q.; Jiang, Y.-Y.; Zeng, C.-C.; Sun, B.-G. Electrocatalytic synthesis of non-symmetric biphenols mediated by tri(p-bromophenyl) amine (TBPA): selective oxidative cross-coupling of different phenols and naphthols. Chin. J. Chem. 2019, 37, 352–358; (i) Franke, R. Dehydrogenative Anodic C-C Coupling of Phenols Bearing Electron Withdrawing Groups. Angew. Chem. Int. Ed. 2020, 59, 315–319; (j) Qian, P.; Yan, Z.-C.; Zhou, Z.-H.; Hu, K.-F.; Wang, J.-W.; Li, Z.-B.; Zha, Z.-G.; Wang, Z.-Y. Electrocatalytic Intermolecular C(sp3)–H/N–H Coupling of Methyl N-Heteroaromatics with Amines and Amino Acids: Access to Imidazo-Fused N-Heterocycles. Org. Lett. 2018, 20, 6359–6363; (k) Wang, Q.-Q.; Wang, P.; Gao, X.-L.; Wang, D.; Wang, S.-C.; Zhang H.; Lei, A.-W. Regioselective/electro-oxidative intermolecular [3+2] annulation for the preparation of indolines. Chem. Sci. 2020, 11, 2181–2186.
- 6(a) Xu, H.-C.; Moeller, K. D. Intramolecular Anodic Olefin Coupling Reactions and the Synthesis of Cyclic Amines. J. Am. Chem. Soc. 2010, 132, 2839–2844; (b) Xu, H.-C.; Moeller, K. D. Intramolecular Anodic Olefin Coupling Reactions: Use of the Reaction Rate to Control Substrate/Product Selectivity. Angew. Chem. Int. Ed. 2010, 49, 8004–8007; (c) Xu, H.-C.; Moeller, K. D. Intramolecular Anodic Olefin Coupling Reactions: The Use of a Nitrogen Trapping Group. J. Am. Chem. Soc. 2008, 130, 13542–13543; (d) Fu, N.-K.; Sauer, G. S.; Lin, S. Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources. J. Am. Chem. Soc. 2017, 139, 15548–15553.
- 7(a) Yuan, Y.; Lei, A.-W. Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reaction. Acc. Chem. Res. 2019, 52, 3309–3324; (b) Tang, S.; Zeng, L.; Lei, A.-W. Oxidative R1−H/R2−H Cross-Coupling with Hydrogen Evolution. J. Am. Chem. Soc. 2018, 140, 13128–13135; (c) Tang, S.; Liu, Y.-C.; Lei, A.-W. Electrochemical Oxidative Cross- coupling with Hydrogen Evolution: A Green and Sustainable Way for Bond Formation. Chem 2018, 4, 27–45.
- 8(a) Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T.; Palladium-Catalyzed Aromatic C−H Halogenation with Hydrogen Halides by Means of Electrochemical Oxidation. J. Am. Chem. Soc. 2009, 131, 11310–11311; (b) Konishi, M.; Tsuchid, M.; Sano, K.; Kochi, T.; Kakiuchi, F.; Palladium- Catalyzed ortho-Selective C–H Chlorination of Benzamide Derivatives under Anodic Oxidation Conditions. J. Org. Chem. 2017, 82, 8716–8724.
- 9 Mei, R.-H.; Sauermann, N.; Oliveira, J. C. A.; Ackermann, L. Electro- Removable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C–H/N–H Activation with Internal Alkynes. J. Am. Chem. Soc. 2018, 140, 7913–7921.
- 10(a) Saito, F.; Aiso, H.; Kochi, T.; Kakiuchi, F.; Palladium-Catalyzed Regioselective Homocoupling of Arenes Using Anodic Oxidation: Formal Electrolysis of Aromatic Carbon–Hydrogen Bonds. Organometallics 2014, 33, 6704–6707; (b) Waldvogel, S. R.; Rockl, J.; Schollmeyer, D.; Franke, R. Dehydrogenative Anodic C-C Coupling of Phenols Bearing Electron Withdrawing Groups. Angew. Chem. Int. Ed. 2020, 59, 315–319.
- 11(a) Morofuji, T.; Shimizu, A.; Yoshida, J.–I. Direct C–N Coupling of Imidazoles with Aromatic and Benzylic Compounds via Electrooxidative C–H Functionalization. J. Am. Chem. Soc. 2014, 136, 4496–4499; (b) Li, C.; Kawamata, Y.; Nakamura, H.; Vantourout, J. C.; Liu, Z.-Q.; Hou, Q.-L.; Bao, D.-H.; Starr, J. T.; Chen, J.-S.; Yan, M.; Baran, P. S. Electrochemically Enabled Nickel-Catalyzed Amination. Angew. Chem. Int. Ed. 2017, 56, 13088–13093; (c) Fu, N.-K.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 2017, 357, 575–579.
- 12(a) Amatore, C.; Cammoun, C.; Jutand, A. Electrochemical Recycling of Benzoquinone in the Pd/Benzoquinone-Catalyzed Heck-Type Reactions from Arenes. Adv. Synth. Catal. 2007, 349, 292–296; (b) Wu, Y.-X.; Xi, Y.-C.; Zhao, M.; Wang, S.-Y. Progress in Electrochemical C—H Functionalizations of Aromatic Compounds. Chin. J. Org. Chem. 2018, 38, 2590–2605.
- 13(a) Sauermann, N.; Mei, R.; Ackermann, L. Electrochemical C-H Amination by Cobalt Catalysis in a Renewable Solvent. Angew. Chem. Int. Ed. 2018, 57, 5090–5094; (b) Ackermann, L. Transient Directing Groups for Transformative C-H Activation by Synergistic Metal Catalysis. Chem 2018, 4, 199–222.
- 14(a) Qiu, Y.; Tian, C.; Massignan, L.; Rogge, T.; Ackermann, L. Electrooxidative Ruthenium-Catalyzed C-H/O-H Annulation by Weak O-Coordination. Angew. Chem. Int. Ed. 2018, 57, 5818–5822; (b) Qiu, Y.; Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann, L. Iridium- Catalyzed Electrooxidative C-H Activation by Chemoselective Redox- Catalyst Cooperation. Angew. Chem. Int. Ed. 2018, 57, 14179–14183; (c) Qiu, Y.; Kong, W. J.; Struwe, J.; Sauermann, N.; Rogge, T.; Scheremetjew, A.; Ackermann, L. Electrooxidative RhodiumCatalyzed C-H/C-H Activation: Electricity as Oxidant for CrossDehydrogenative Alkenylation. Angew. Chem. Int. Ed. 2018, 57, 5828–5832.
- 15(a) Ma, C.; Fang, P.; Mei, T.-S. Recent Advances in C–H Functionalization Using Electrochemical Transition Metal Catalysis. ACS Catal. 2018, 8, 7179–7189; (b) Jiao, K.-J.; Zhao, C.-Q.; Fang, P.; Mei, T.-S. Palladium catalyzed C-H functionalization with electrochemical oxidation. Tetrahedron Lett. 2017, 58, 797–802; (c) Yang, Q.-L.; Fang, P.; Mei, T.-S. Recent Advances in Organic Electrochemical C–H Funtionalization. Chin. J. Chem. 2018, 36, 338–352; (d) Yang, Q.-L.; Wang, X.-Y.; Weng, X.-J.; Yang, X.; Xu, X.-T.; Tong, X.-F.; Fang, P.; Wu, X.-Y..; Mei, T.-S. Palladium-Catalyzed ortho-Selective C—H Chlorination of Arenes Using Anodic Oxidation. Acta Chim. Sinica 2019, 77, 866–873.
- 16(a) Xu, F.; Li, Y.-J.; Huang, C.; Xu, H.-C. Ruthenium-Catalyzed Electrochemical Dehydrogenative Alkyne Annulation. ACS Catal. 2018, 8, 3820–3824; (b) Xu, F.; Long, H.; Song, J.; Xu, H. C. De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angew. Chem. Int. Ed. 2019, 58, 9017–9021.
- 17(a) Gao, X.-L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A.-W. Cobalt(II)-Catalyzed Electrooxidative C-H Amination of Arenes with Alkylamines. J. Am. Chem. Soc. 2018, 140, 4195–4199; (b) Tang, S.; Wang, D.; Liu, Y.; Zeng, L.; Lei, A.-W. Cobalt-catalyzed electrooxidative C-H/N-H [4+2] annulation with ethylene or ethyne. Nat. Commun. 2018, 9, 1–7; (c) Zeng, L.; Li, H.; Tang, S.; Gao, X.; Deng, Y.; Zhang, G.; Pao, C.-W.; Chen, J.-L.; Lee, J.-F.; Lei, A.-W. Cobalt-Catalyzed Electrochemical Oxidative C–H/N–H Carbonylation with Hydrogen Evolution. ACS Catal. 2018, 8, 5448–5453; (d) Zeng, L.; Li, H.; Hu, J.; Zhang, D.; Hu, J.; Peng, P.; Wang, S.; Shi, R.; Peng, J.; Pao, C.; Chen, J.; Lee, J.; Zhang, H.; Chen, Y.-H.; Lei, A.-W. Electrochemical oxidative aminocarbonylation of terminal alkynes. Nat. Catal. 2020, 3, 438–445; (e) Zeng, L.; Li, H.; Tang, S.; Gao, X.; Deng, Y.; Zhang, G.; Pao, C.-W.; Chen, J.-L.; Lee, J.-F.; Lei, A.-W. Cobalt-Catalyzed Electrochemical Oxidative C–H/N–H Carbonylation with Hydrogen Evolution. ACS Catal. 2018, 8, 5448–5453; (f) Duan, Z.-L.; Zhang, L.; Zhang, W.-X.; Lu, L.-J.; Zeng, L.; Shi, R.-Y.; Lei, A.-W. Palladium-catalyzed Electrooxidative C–H Amination towards the Synthesis of Pyrido[1,2-a] benzimidazoles with Hydrogen Evolution. ACS Catal. 2020, 10, 3828–3831.
- 18 Maity, A.; Frey, B.-L.; Hoskinson, N. D.; Powers, D. C. Electrocatalytic C−N Coupling via Anodically Generated Hypervalent Iodine Intermediates. J. Am. Chem. Soc. 2020, 142, 4990–4995.
- 19 Zhang, P.; Li, B.-Y.; Niu, L.-W.; Wang, L.; Zhang, G.-F.; Jia, X.-F.; Zhang, G.-Y.; Liu, S.-Y.; Li, M.; Gao, W.; Qin, D.-W.; Chen, J.-B. Scalable Electrochemical Transition-Metal-Free Dehydrogenative Cross-Coupling Amination Enabled Alkaloid Clausines Synthesis. Adv. Snyth. Catal. 2020, 362, 2342–2347.