Strategies of Removing Residual Lithium Compounds on the Surface of Ni-Rich Cathode Materials†
Yuefeng Su
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorLinwei Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorGang Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorCorresponding Author
Lai Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
E-mail: [email protected]Search for more papers by this authorNing Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorYun Lu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorLiying Bao
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorShi Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorFeng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorYuefeng Su
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorLinwei Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorGang Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorCorresponding Author
Lai Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
E-mail: [email protected]Search for more papers by this authorNing Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorYun Lu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this authorLiying Bao
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorShi Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorFeng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Search for more papers by this author† Dedicated to the 80th Anniversary of Beijing Institute of Technology.
Abstract
Ni-rich cathode materials have become one of the most promising cathode materials for advanced high-energy Li-ion batteries (LIBs) owing to their high specific capacity. However, Ni-rich cathode materials are sensitive to the trace H2O and CO2 in the air, and tend to react with them to generate LiOH and Li2CO3 at the particle surface region (named residual lithium compounds, labeled as RLCs). The RLCs will deteriorate the comprehensive performances of Ni-rich cathode materials and make trouble in the subsequent manufacturing process of electrode, including causing low initial coulombic efficiency and poor storage property, bringing about potential safety hazards, and gelatinizing the electrode slurry. Therefore, it is of considerable significance to remove the RLCs. Researchers have done a lot of work on the corresponding field, such as exploring the formation mechanism and elimination methods. This paper investigates the origin of the surface residual lithium compounds on Ni-rich cathode materials, analyzes their adverse effects on the performance and the subsequent electrode production process, and summarizes various kinds of feasible methods for removing the RLCs. Finally, we propose a new research direction of eliminating the lithium residuals after comparing and summing up the above. We hope this work can provide a reference for alleviating the adverse effects of residual lithium compounds for Ni-rich cathode materials’ industrial production.
References
- 1 Zeng, X.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019, 9, 1900161.
- 2 Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y. M.; Yoon, W. S. Advances in the Cathode Materials for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed. 2019, 58, 2–30.
- 3 Yoshino, A. The birth of the lithium-ion battery. Angew. Chem. Int. Edit. 2012, 51, 5798–800.
- 4 Lee, H.; Oh, P.; Kim, J.; Cha, H.; Chae, S.; Lee, S.; Cho, J. Advances and Prospects of Sulfide All-Solid-State Lithium Batteries via One-to-One Comparison with Conventional Liquid Lithium Ion Batteries. Adv. Mater. 2019, 31, 1900376.
- 5 Meng, J.; Cai, L.; Stroe, D.-I.; Luo, G.; Sui, X.; Teodorescu, R. Lithium- ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles. Energy 2019, 185, 1054–1062.
- 6 Lin, Q.; Wang, J.; Xiong, R.; Shen, W.; He, H. Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries. Energy 2019, 183, 220–234.
- 7 Shetti, N. P.; Dias, S.; Reddy, K. R. Nanostructured organic and inorganic materials for Li-ion batteries: A review. Mater. Sci. Semicond. Process 2019, 104, 104684.
- 8 Xu, T.; Zhou, C.; Zhou, H.; Wang, Z.; Ren, J. Synthesis of Alumina- Coated Natural Graphite for Highly Cycling Stability and Safety of Li-Ion Batteries. Chin. J. Chem. 2019, 37, 342–346.
- 9 Sun, H. H.; Ryu, H.-H.; Kim, U.-H.; Weeks, J. A.; Heller, A.; Sun, Y.-K.; Mullins, C. B. Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes. ACS Energy Lett. 2020, 5, 1136–1146.
- 10 Wang, C.; Li, S.; Han, Y.; Lu, Z. Assembly of LiMnPO4 Nanoplates into Microclusters as a High-Performance Cathode in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 27618–27624.
- 11 Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.
- 12 Wu, X.; Song, K.; Zhang, X.; Hu, N.; Li, L.; Li, W.; Zhang, L.; Zhang, H. Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Front. Energy Res. 2019, 7, 65.
- 13 Pu, J.; Shen, Z.; Zhong, C.; Zhou, Q.; Liu, J.; Zhu, J.; Zhang, H. Electrodeposition Technologies for Li-Based Batteries: New Frontiers of Energy Storage. Adv. Mater. 2019, 31, 1903808.
- 14 Zhang, S.; Ma, J.; Hu, Z.; Cui, G.; Chen, L. Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. Chem. Mat. 2019, 31, 6033–6065.
- 15 Sun, H. H.; Hwang, J. Y.; Yoon, C. S.; Heller, A.; Mullins, C. B. Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF3-Coated Nanorod Gradient Na [Ni0.65Co0.08Mn0.27] O2 Cathode for Sodium-Ion Batteries. ACS Nano 2018, 12, 12912–12922.
- 16 Zhang, P.; Zhu, Q.; Guan, Z.; Zhao, Q.; Sun, N.; Xu, B. A Flexible Si@C Electrode with Excellent Stability Employing an MXene as a Multifunctional Binder for Lithium-Ion Batteries. ChemSusChem 2020, 13, 1621–1628.
- 17 Wu, T.; Wang, K.; Xiang, M.; Fu, Q. Progresses in Manufacturing Techniques of Lithium-Ion Battery Separators in China. Chin. J. Chem. 2019, 37, 1207–1215.
- 18 Sun, N.; Guan, Z.; Zhu, Q.; Anasori, B.; Gogotsi, Y.; Xu, B. Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation. Nano-Micro Lett. 2020, 12, 89.
- 19 Maleki Kheimeh Sari, H.; Li, X. Controllable Cathode–Electrolyte Interface of Li [Ni0.8Co0.1Mn0.1] O2 for Lithium Ion Batteries: A Review. Adv. Energy Mater. 2019, 9, 1901597.
- 20 Wang, Y.; Yang, Q.; Zhao, Y.; Du, S.; Zhi, C. Recent Advances in Electrode Fabrication for Flexible Energy-Storage Devices. Adv. Mater. Technol. 2019, 4, 1900083.
- 21 Goonetilleke, D.; Sharma, N.; Pang, W. K.; Peterson, V. K.; Petibon, R.; Li, J.; Dahn, J. R. Structural Evolution and High-Voltage Structural Stability of Li (NixMnyCoz)O2 Electrodes. Chem. Mat. 2018, 31, 376–386.
- 22 Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 4440–4457.
- 23 Robert, R.; Villevieille, C.; Novák, P. Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 8589–8598.
- 24 Kong, F.; Liang, C.; Wang, L.; Zheng, Y.; Perananthan, S.; Longo, R. C.; Ferraris, J. P.; Kim, M.; Cho, K. Kinetic Stability of Bulk LiNiO2 and Surface Degradation by Oxygen Evolution in LiNiO2 Based Cathode Materials. Adv. Energy Mater. 2019, 9, 1802586.
- 25 Kim, J. H.; Ryu, H. H.; Kim, S. J.; Yoon, C. S.; Sun, Y. K. Degradation Mechanism of Highly Ni-Rich Li[NixCoyMn1–x–y]O2 Cathodes with x > 0.9. ACS Appl. Mater. Interfaces 2019, 11, 30936–30942.
- 26 David, L.; Mohanty, D.; Geng, L.; Ruther, R. E.; Sefat, A. S.; Cakmak, E.; Veith, G. M.; Meyer, H. M.; Wang, H.; Wood, D. L. High-Voltage Performance of Ni-Rich NCA Cathodes: Linking Operating Voltage with Cathode Degradation. ChemElectroChem 2019, 6, 5571–5580.
- 27 Iqbal, A.; Li, D. Systematic study of the effect of calcination temperature and Li/M molar ratio on high performance Ni-rich layered LiNi0.9Co0.1O2 cathode materials. Chem. Phys. Lett. 2019, 720, 97–106.
- 28 Lee, S.-H.; Lee, S.; Jin, B.-S.; Kim, H.-S. Preparation and electrochemical performances of Ni-rich LiNi0.91Co0.06Mn0.03O2 cathode for high- energy LIBs. Int. J. Hydrog. Energy 2019, 44, 13684–13689.
- 29 Zhang, J. T.; Tan, X. H.; Guo, L. M.; Jiang, Y.; Liu, S. N.; Wang, H. F.; Kang, X. H.; Chu, W. G. Controllable formation of lithium carbonate surface phase during synthesis of nickel-rich LiNi0.9Mn0.1O2 in air and its protection role in electrochemical reaction. J. Alloy. Compd. 2019, 771, 42–50.
- 30 You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A. Modified High-Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 6480–6485.
- 31 Jo, J. H.; Jo, C.-H.; Yashiro, H.; Kim, S.-J.; Myung, S.-T. Re-heating effect of Ni-rich cathode material on structure and electrochemical properties. J. Power Sources 2016, 313, 1–8.
- 32 Zeng, X.; Jian, T.; Lu, Y.; Yang, L.; Ma, W.; Yang, Y.; Zhu, J.; Huang, C.; Dai, S.; Xi, X. Enhancing High-Temperature and High-Voltage Performances of Single-Crystal LiNi0.5Co0.2Mn0.3O2 Cathodes through a LiBO2/LiAlO2 Dual-Modification Strategy. ACS Sustain. Chem. Eng. 2020, 8, 6293–6304.
- 33 Ryu, W.-G.; Shin, H.-S.; Park, M.-S.; Kim, H.; Jung, K.-N.;Lee, J.-W. Mitigating storage-induced degradation of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by surface tuning with phosphate. Ceram. Int. 2019, 45, 13942–13950.
- 34 Cho, D.-H.; Jo, C.-H.; Cho, W.; Kim, Y.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.-T. Effect of Residual Lithium Compounds on Layer Ni-Rich Li Ni0.7Mn0.3O2. J. Electrochem. Soc. 2014, 161, A920–A926.
- 35 Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and Reality of Ni-Rich Cathode for Commercialization. Adv. Energy Mater. 2018, 8, 1702028.
- 36 Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M. Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Appl. Mater. Interfaces 2019, 11, 22029–22050.
- 37 Wu, F.; Liu, N.; Chen, L.; Su, Y.; Tan, G.; Bao, L.; Zhang, Q.; Lu, Y.; Wang, J.; Chen, S.; Tan, J. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 2019, 59, 50–57.
- 38 Zheng, J.; Ye, Y.; Liu, T.; Xiao, Y.; Wang, C.; Wang, F.; Pan, F. Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Acc. Chem. Res. 2019, 52, 2201–2209.
- 39 Huang, B.; Liu, D.; Qian, K.; Zhang, L.; Zhou, K.; Liu, Y.; Kang, F.; Li, B. A Simple Method for the Complete Performance Recovery of Degraded Ni-rich LiNi0.70Co0.15Mn0.15O2 Cathode via Surface Reconstruction. ACS Appl. Mater. Interfaces 2019, 11, 14076–14084.
- 40 Qiu, Q. Q.; Shadike, Z.; Wang, Q. C.; Yue, X. Y.; Li, X. L.; Yuan, S. S.; Fang, F.; Wu, X. J.; Hunt, A.; Waluyo, I.; Bak, S. M.; Yang, X. Q.; Zhou, Y. N. Improving the Electrochemical Performance and Structural Stability of the LiNi0.8Co0.15Al0.05O2 Cathode Material at High-Voltage Charging through Ti Substitution. ACS Appl. Mater. Interfaces 2019, 11, 23213–23221.
- 41 Wang, Y.; Liu, B.-N.; Zhou, G.; Nie, K.-H.; Zhang, J.-N.; Yu, X.-Q.; Li, H. Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating. Chin. Phys. B 2019, 28, 068202.
- 42 Zhang, J.; Ren, T.; Duan, J.; Li, X.; Dong, P.; Zhang, Y.; Wang, D. Enhanced High-Voltage Cycling Stability of Nickel-Rich Cathode Materials by Surface Modification Using LaFeO3 Ionic Conductor. JOM 2019, 71, 1975–1980.
- 43 Wang, L.; Hu, Y. H. Surface modification of LiNi0.5Co0.2Mn0.3O2cathode materials with Li2O-B2O3-LiBr for lithium-ion batteries. Int. J. Energy Res. 2019, 43, 4644–4651.
- 44 Bichon, M.; Sotta, D.; Dupré, N.; De Vito, E.; Boulineau, A.; Porcher, W.; Lestriez, B. Study of Immersion of LiNi0.5Mn0.3Co0.2O2 Material in Water for Aqueous Processing of Positive Electrode for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 18331–18341.
- 45 Faenza, N. V.; Bruce, L.; Lebens-Higgins, Z. W.; Plitz, I.; Pereira, N.; Piper, L. F. J.; Amatucci, G. G. Editors' Choice-Growth of Ambient Induced Surface Impurity Species on Layered Positive Electrode Materials and Impact on Electrochemical Performance. J. Electrochem. Soc. 2017, 164, A3727–A3741.
- 46 Jung, R.; Morasch, R.; Karayaylali, P.; Phillips, K.; Maglia, F.; Stinner, C.; Shao-Horn, Y.; Gasteiger, H. A. Effect of Ambient Storage on the Degradation of Ni-Rich Positive Electrode Materials (NMC811) for Li-Ion Batteries. J. Electrochem. Soc. 2018, 165, A132–A141.
- 47 Liu, H. S.; Zhang, Z. R.; Gong, Z. L.; Yang, Y. Origin of Deterioration for LiNiO2 Cathode Material during Storage in Air. Electrochem. Solid- State Lett. 2004, 7, A190–A193.
- 48 Wu, F.; Li, Q.; Chen, L.; Lu, Y.; Su, Y.; Bao, L.; Chen, R.; Chen, S. Use of Ce to Reinforce the Interface of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Materials for Lithium-Ion Batteries under High Operating Voltage. ChemSusChem 2019, 12, 935–943.
- 49 Wang, S.; Li, Y.; Wu, J.; Zheng, B.; McDonald, M. J.; Yang, Y. Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification. Phys. Chem. Chem. Phys. 2015, 17, 10151–10159.
- 50 Doo, S. W.; Lee, S.; Kim, H.; Choi, J. H.; Lee, K. T. Hydrophobic Ni-Rich Layered Oxides as Cathode Materials for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 6246–6253.
- 51 Fan, Z.; Zhang, L.; Baumann, D.; Mei, L.; Yao, Y.; Duan, X.; Shi, Y.; Huang, J.; Huang, Y.; Duan, X. In Situ Transmission Electron Microscopy for Energy Materials and Devices. Adv. Mater. 2019, 31, e1900608.
- 52 Grenier, A.; Liu, H.; Wiaderek, K. M.; Lebens-Higgins, Z. W.; Borkiewicz, O. J.; Piper, L. F. J.; Chupas, P. J.; Chapman, K. W. Reaction Heterogeneity in LiNi0.8Co0.15Al0.05O2 Induced by Surface Layer. Chem. Mat. 2017, 29, 7345–7352.
- 53 Chen, T.; Wang, F.; Li, X.; Yan, X.; Wang, H.; Deng, B.; Xie, Z.; Qu, M. Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-Rich LiNi0.8Co0.15Al0.05O2 cathode material. Appl. Surf. Sci. 2019, 465, 863–870.
- 54 Zhao, W.; Zheng, J.; Zou, L.; Jia, H.; Liu, B.; Wang, H.; Engelhard, M. H.; Wang, C.; Xu, W.; Yang, Y.; Zhang, J.-G. High Voltage Operation of Ni-Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Adv. Energy Mater. 2018, 8, 1800297.
- 55 Ding, Y.; Deng, B.; Wang, H.; Li, X.; Chen, T.; Yan, X.; Wan, Q.; Qu, M.; Peng, G. Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue. J. Alloy. Compd. 2019, 774, 451–460.
- 56 Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. ACS Appl. Mater. Interfaces 2018, 10, 38892–38899.
- 57 Kong, D.; Hu, J.; Chen, Z.; Song, K.; Li, C.; Weng, M.; Li, M.; Wang, R.; Liu, T.; Liu, J.; Zhang, M.; Xiao, Y.; Pan, F. Ti-Gradient Doping to Stabilize Layered Surface Structure for High Performance High-Ni Oxide Cathode of Li-Ion Battery. Adv. Energy Mater. 2019, 9, 1901756.
- 58 Li, H.; Li, J.; Zaker, N.; Zhang, N.; Botton, G. A.; Dahn, J. R. Synthesis of Single Crystal LiNi0.88Co0.09Al0.03O2 with a Two-Step Lithiation Method. J. Electrochem. Soc. 2019, 166, A1956–A1963.
- 59 Kim, M.-H.; Shin, H.-S.; Shin, D.; Sun, Y.-K. Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation. J. Power Sources 2006, 159, 1328–1333.
- 60 Sun, S.; Wan, N.; Wu, Q.; Zhang, X.; Pan, D.; Bai, Y.; Lu, X. Surface- modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ion. 2015, 278, 85–90.
- 61 Oh, P.; Song, B.; Li, W.; Manthiram, A. Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn1.9Al0.1O4. J. Mater. Chem. A 2016, 4, 5839–5841.
- 62 Li, J.; Li, W.; You, Y.; Manthiram, A. Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase. Adv. Energy Mater. 2018, 8, 1801957.
- 63 Renfrew, S. E.; McCloskey, B. D. Residual Lithium Carbonate Predominantly Accounts for First Cycle CO2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides. J. Am. Chem. Soc. 2017, 139, 17853–17860.
- 64 Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Oxygen Release Degradation in Li-Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches. Adv. Energy Mater. 2019, 9, 1900551.
- 65 Xiao, B.; Sun, X. Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials: An Overview of the Fundamental Origins and Remedying Approaches. Adv. Energy Mater. 2018, 8, 1802057.
- 66 Xu, S.; Wang, X.; Zhang, W.; Xu, K.; Zhou, X.; Zhang, Y.; Wang, H.; Zhao, J. The effects of washing on LiNi0.83Co0.13Mn0.04O2 cathode materials. Solid State Ion. 2019, 334, 105–110.
- 67 Xiong, X.; Wang, Z.; Yue, P.; Guo, H.; Wu, F.; Wang, J.; Li, X. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources 2013, 222, 318–325.
- 68 Park, J.-H.; Choi, B.; Kang, Y.-S.; Park, S. Y.; Yun, D. J.; Park, I.; Shim, J. H.; Park, J.-H.; Han, H. N.; Park, K. Effect of Residual Lithium Rearrangement on Ni-rich Layered Oxide Cathodes for Lithium-Ion Batteries. Energy Technol. 2018, 6, 1361–1369.
- 69 Pritzl, D.; Teufl, T.; Freiberg, A. T. S.; Strehle, B.; Sicklinger, J.; Sommer, H.; Hartmann, P.; Gasteiger, H. A. Editors' Choice—Washing of Nickel-Rich Cathode Materials for Lithium-Ion Batteries: Towards a Mechanistic Understanding. J. Electrochem. Soc. 2019, 166, A4056–A4066.
- 70 Zheng, X.; Li, X.; Wang, Z.; Guo, H.; Huang, Z.; Yan, G.; Wang, D. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim. Acta 2016, 191, 832–840.
- 71 Xu, S.; Du, C.; Xu, X.; Han, G.; Zuo, P.; Cheng, X.; Ma, Y.; Yin, G. A Mild Surface Washing Method Using Protonated Polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 Material of Lithium Ion Batteries. Electrochim. Acta 2017, 248, 534–540.
- 72 Sicklinger, J.; Metzger, M.; Beyer, H.; Pritzl, D.; Gasteiger, H. A. Ambient Storage Derived Surface Contamination of NCM811 and NCM111: Performance Implications and Mitigation Strategies. J. Electrochem. Soc. 2019, 166, A2322–A2335.
- 73 Gu, W.; Dong, Q.; Zheng, L.; Liu, Y.; Mao, Y.; Zhao, Y.; Duan, W.; Lin, H.; Shen, Y.; Chen, L. Ambient Air Stable Ni-Rich Layered Oxides Enabled by Hydrophobic Self-Assembled Monolayer. ACS Appl. Mater. Interfaces 2020, 12, 1937–1943.
- 74 Kim, J.; Lee, J.; Ma, H.; Jeong, H. Y.; Cha, H.; Lee, H.; Yoo, Y.; Park, M.; Cho, J. Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1704309.
- 75 Liu, Y.; Tang, L.-b.; Wei, H.-x.; Zhang, X.-h.; He, Z.-j.; Li, Y.-j.; Zheng, J.-c. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 2019, 65, 104043.
- 76 Xie, Q.; Li, W.; Dolocan, A.; Manthiram, A. Insights into Boron-Based Polyanion-Tuned High-Nickel Cathodes for High-Energy-Density Lithium-Ion Batteries. Chem. Mat. 2019, 31, 8886–8897.
- 77 Zhai, Y.; Yang, W.; Ning, D.; Yang, J.; Sun, L.; Schuck, G.; Schumacher, G.; Liu, X. Improving the cycling and air-storage stability of LiNi0.8Co0.1Mn0.1O2 through integrated surface/interface/doping engineering. J. Mater. Chem. A 2020, 8, 5234–5245.
- 78 Zhang, C.; Xu, S.; Han, B.; Lin, G.; Huang, Q.; Ivey, D. G.; Yang, C.; Wang, P.; Wei, W. Towards rational design of high performance Ni-rich layered oxide cathodes: The interplay of borate-doping and excess lithium. J. Power Sources 2019, 431, 40–47.
- 79 Li, Y.-C.; Xiang, W.; Wu, Z.-G.; Xu, C.-L.; Xu, Y.-D.; Xiao, Y.; Yang, Z.-G.; Wu, C.-J.; Lv, G.-P.; Guo, X.-D. Construction of homogeneously Al3+ doped Ni-rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim. Acta 2018, 291, 84–94.
- 80 Lai, Y.; Wu, J.; Tang, Y.; Shang, G.; Yang, X.; Fan, H.; Peng, C.; Zhang, Z. Alleviating the air sensitivity of nickel-rich LiNi0.815Co0.15Al0.035O2 cathode by Zr4+-modification for Li-ion batteries. Ceram. Int. 2019, 45, 14270–14277.
- 81 Zhang, J.; Tan, X.; Guo, L.; Jiang, Y.; Liu, S.; Wang, H.; Kang, X.; Chu, W. Origin of Performance Differences of Nickel-Rich LiNi0.9Mn0.1O2 Cathode Materials Synthesized in Oxygen and Air. Energy Technol. 2019, 7, 1800752.