Monodentate AIEgen Anchored on Metal-Organic Framework for Fast Fluorescence Sensing of Phosphate
Xinli Gao
Instrumental Analysis Center, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorLei Pei
College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorWenjuan Xue
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387 China
Search for more papers by this authorCorresponding Author
Hongliang Huang
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387 China
E-mail: [email protected] (X. Zhao); [email protected] (H. Huang)Search for more papers by this authorZhuqing Gao
College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorCorresponding Author
Xudong Zhao
College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024 China
E-mail: [email protected] (X. Zhao); [email protected] (H. Huang)Search for more papers by this authorXinli Gao
Instrumental Analysis Center, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorLei Pei
College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorWenjuan Xue
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387 China
Search for more papers by this authorCorresponding Author
Hongliang Huang
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387 China
E-mail: [email protected] (X. Zhao); [email protected] (H. Huang)Search for more papers by this authorZhuqing Gao
College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorCorresponding Author
Xudong Zhao
College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024 China
E-mail: [email protected] (X. Zhao); [email protected] (H. Huang)Search for more papers by this authorAbstract
Herein, a novel sensor (TPE-UiO-66) was designed via anchoring monodentate tetraphenylethylene (TPE) onto UiO-66 framework. The combination of the distinct aggregation-induced emission (AIE) of TPE and the easy replacement of monodentate linker by guest phosphate, makes TPE-UiO-66 an ideal platform for sensing HPO42–. Experimental results indicate that TPE-UiO-66 can selectively sense HPO42– from other common anions. The limit of detection (LOD) can reach to 5.56 μmol·L–1 and more importantly, TPE-UiO-66 also exhibits an ultra-fast equilibrium response of 2 min, far faster than those of other sensors especially for UiO-66-NH2. The combination of experimental analysis and density functional theory (DFT) calculations demonstrates that the high selectivity, high sensitivity and fast response of HPO42– detection by TPE-UiO-66 can be attributed to the stronger coordination interactions of HPO42– with Zr-O cluster of UiO-66 than that of TPE molecule. This study not only provides a potential probe for phosphate, but also represents a novel strategy to design stimuli-responsive fluorescent MOF-based sensors via using monodentate AIEgens.
Supporting Information
Filename | Description |
---|---|
cjoc202000364-sup-0001-Supinfo.pdfPDF document, 815.4 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Dalapati, R.; Biswas, S. Post-Synthetic Modification of a Metal-Organic Framework with Fluorescent-Tag for Dual Naked-Eye Sensing in Aqueous Medium. Sens. Actuators, B 2017, 239, 759–767.
- 2 Fan, C.; Lv, X.; Tian, M.; Yu, Q.; Mao, Y.; Wang, H.; Liu, G. A Terbium(III)-Functionalized Zinc(II)-Organic Framework for Fluorometric Determination of Phosphate. Microchim. Acta 2020, 187, 84.
- 3 Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications. Chem. Soc. Rev. 2017, 46, 3242–3285.
- 4 Wang, P.-L.; Xie, L.-H.; Joseph, E. A.; Li, J.-R.; Su, X.-O.; Zhou, H.-C. Metal-organic frameworks for food safety. Chem. Rev. 2019, 119, 10638–10690.
- 5 Li, L.; Lin, R.-B.; Krishna, R.; Li, H.; Xiang, S.; Wu, H.; Li, J.; Zhou, W.; Chen, B. Ethane/Ethylene Separation in a Metal-Organic Framework with Iron-Peroxo Sites. Science 2018, 362, 443–446.
- 6 Wu, M.-X.; Yang, Y.-W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 1606134.
- 7 Xie, Z.; Xu, W.; Cui, X.; Wang, Y. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications. ChemSusChem 2017, 10, 1645–1663.
- 8 Gao, X.; Zhao, H.; Zhao, X.; Li, Z.; Gao, Z.; Wang, Y.; Huang, H. Aqueous Phase Sensing of Bismuth Ion Using Fluorescent Metal-Organic Framework. Sens. Actuators, B 2018, 266, 323–328.
- 9 Chang, J.; Wang, X.; Wang, J.; Li, H.; Li, F. Nucleic Acid Functionalized Metal-Organic Frameworks-Based Homogeneous Electrochemical Biosensor for Simultaneous Detection of Multiple Tumor Biomarkers. Anal. Chem. 2019, 91, 3604–3610.
- 10 Woellner, M.; Hausdorf, S.; Klein, N.; Mueller, P.; Smith, M. W.; Kaskel, S. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks. Adv. Mater. 2018, 30, 1704679.
- 11 Zhang, M.; Saha, M. L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.; Li, X.; Huang, F.; Yin, S.; Stang, P. J. Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. J. Am. Chem. Soc. 2017, 139, 5067–5074.
- 12 Xu, L.; Xu, Y.; Li, X.; Wang, Z.; Sun, T.; Zhang, X. Eu3+/Tb3+ Functionalized Bi-Based Metal-Organic Frameworks toward Tunable White- Light Emission and Fluorescence Sensing Applications. Dalton Trans. 2018, 47, 16696–16703.
- 13 Gao, Y.-Y.; Guo, X.-F.; Wang, H. High Sensitive Luminescence Metal- Organic Framework Sensor for Hydrogen Sulfide in Aqueous Solution: A Trial of Novel Turn-on Mechanism. Sens. Actuators, B 2017, 243, 8–13.
- 14 Zhao, X.; Zhang, Y.; Han, J.; Jing, H.; Gao, Z.; Huang, H.; Wang, Y.; Zhong, C. Design of “Turn-on” Fluorescence Sensor for L-Cysteine Based on the Instability of Metal-Organic Frameworks. Microporous Mesoporous Mater. 2018, 268, 88–92.
- 15 Yang, J.; Dai, Y.; Zhu, X.; Wang, Z.; Li, Y.; Zhuang, Q.; Shi, J.; Gu, J. Metal-Organic Frameworks with Inherent Recognition Sites for Selective Phosphate Sensing through Their Coordination-Induced Fluorescence Enhancement Effect. J. Mater. Chem. A 2015, 3, 7445–7452.
- 16
Asha, K. S.; Bhattacharjee, R.; Mandal, S. Complete Transmetalation in A Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media. Angew. Chem. 2016, 128, 11700–11704.
10.1002/ange.201606185 Google Scholar
- 17 Das, A.; Das, S.; Trivedi, S. V.; Biswas, S. A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. Dalton Trans. 2019, 48, 1332–1343.
- 18 Sun, Y.; Sun, Q.; Huang, H.; Aguila, B.; Niu, Z.; Perman, J. A.; Ma, S. A Molecular-Level Superhydrophobic External Surface to Improve the Stability of Metal-Organic Frameworks. J. Mater. Chem. A 2017, 5, 18770–18776.
- 19 Zhu, X.; Li, B.; Yang, J.; Li, Y.; Zhao, W.; Shi, J.; Gu, J. Effective Adsorption and Enhanced Removal of Organophosphorus Pesticides from Aqueous Solution by Zr-Based MOFs of UiO-67. ACS Appl. Mater. Interfaces 2015, 7, 223–231.
- 20 Li, H.; Lin, H.; Lv, W.; Gai, P.; Li, F. Equipment-Free and Visual Detection of Multiple Biomarkers via an Aggregation Induced Emission Luminogen-Based Paper Biosensor. Biosens. Bioelectron. 2020, 165, 112336.
- 21 Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, 4332–4353.
- 22 Li, H.; Wang, C.; Hou, T.; Li, F. Amphiphile-Mediated Ultrasmall Aggregation Induced Emission Dots for Ultrasensitive Fluorescence Biosensing. Anal. Chem. 2017, 89, 9100–9107.
- 23 Liu, S.; Cheng, J.; Xu, J. New Dopa-AIE Compound Used as Fluorescence Sensor Material: Specificity and Quantification for Cu(II). Chin. J. Chem. 2017, 35, 335–340.
- 24 Li, H.; Chang, J.; Gai, P.; Li, F. Label-Free and Ultrasensitive Biomolecule Detection Based on Aggregation Induced Emission Fluorogen via Target-Triggered Hemin/G-quadruplex-Catalyzed Oxidation Reaction. ACS Appl. Mater. Interfaces 2018, 10, 4561–4568.
- 25 Zhao, S.-S.; Zhang, H.; Wang, L.; Chen, L.; Xie, Z. Facile Preparation of a Tetraphenylethylene-Doped Metal-Organic Framework for White Light-Emitting Diodes. J. Mater. Chem. C 2018, 6, 11701–11706.
- 26 Shustova, N. B.; Ong, T.-C.; Cozzolino, A. F.; Michaelis, V. K.; Griffin, R. G.; Dincă, M. Phenyl Ring Dynamics in a Tetraphenylthylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission. J. Am. Chem. Soc. 2012, 134, 15061–15070.
- 27 Wang, L.; Wang, W.; Xie, Z. Tetraphenylethylene-based fluorescent coordination polymers for drug delivery. J. Mater. Chem. B 2016, 4, 4263–4366.
- 28 Wei, Z.; Gu, Z.-Y.; Arvapally, R. K.; Chen, Y.-P.; McDougald, R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.; Omary, M. A.; Zhou, H.-C. Rigidifying Fluorescent Linkers by Metal-Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement. J. Am. Chem. Soc. 2014, 136, 8269–8276.
- 29 Shustova, N. B.; McCarthy, B. D.; Dincă, M. Turn-On Fluorescence in Tetraphenylethylene-Based Metal-Organic Frameworks: An Alternative to Aggregation-Induced Emission. J. Am. Chem. Soc. 2011, 133, 20126–20129.
- 30 Wu, X.-X.; Fu, H.-R.; Han, M.-L.; Zhou, Z.; Ma, L.-F. Tetraphenylethylene Immobilized Metal-Organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr2O72- and Nitroaromatic Explosives. Gryst. Growth. Des. 2017, 17, 6041–6048.
- 31 Jiang, B.; Zhang, C.-W.; Shi, X.-L.; Yang, H.-B. AIE-Active Metal-Organic Coordination Complexes Based on Tetraphenylene Unit and Their Applications. Chinese J. Polym. Sci. 2019, 37, 372–382.
- 32 Furukawa, H.; Candara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.
- 33 Jiang, J.; Gandara, F.; Zhang, Y.-B.; Na, K.; Yaghi, O. M.; Klemperer, W. G. Superacidity in Sulfated Metal-Organic Framework-808. J. Am. Chem. Soc. 2014, 136, 12844–12847.
- 34 Drache, F.; Bon, V.; Senkovska, I.; Marschelke, C.; Synytska, A.; Kaskel, S. Postsynthetic Inner-Surface Functionalization of the Highly Stable Zirconium-Based Metal-Organic Framework DUT-67. Inorg. Chem. 2016, 55, 7206–7213.
- 35 Wang, K.; Li, C.; Liang, Y.; Han, T.; Huang, H.; Yang, Q.; Liu, D.; Zhong, C. Rational Construction of Defects in a Metal-Organic Framework for Highly Efficient Adsorption and Separation of Dyes. Chem. Eng. J. 2016, 289, 486–493.
- 36 Tang, Y.; Huang, H.; Xue, W.; Chang, Y.; Li, Y.; Guo, X.; Zhong, C. Rigidifying Induced Fluorescence Enhancement in 2D Porous Covalent Triazine Framework Nanosheets for the Simultaneously Luminous Detection and Adsorption Removal of Antibiotics. Chem. Eng. J. 2020, 384, 123382.
- 37 La, D. D.; Bhosale, S. V.; Jones, L. A.; Bhosale, S. V. Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 12189–12216.
- 38 Ratkovski, G. P.; do Nascimento, K. O.; Pedro, G. C.; Ratkovski, D. R.; Gorza, F. D. S.; da Silva, R. J.; Maciel, B. G.; Mojica-Sánchez, L. C.; de Melo, C. P. Spinel Cobalt Ferrite Nanoparticles for Sensing Phosphate Ions in Aqueous Media and Biological Samples. Langmuir 2020, 36, 2920–2929.
- 39 Li, J.; Zou, J.-Y.; You, S.-Y.; Liu, Y.-W.; Cui, H.-M.; Zhang, S.-W. A Dual Luminescent Chemosensor Derived from a Europium(III) Metal-Organic Framework for Quantitative Detection of Phosphate Anions and Acetylacetone in Aqueous Solution. Dyes Pigm. 2020, 173, 108004.
- 40 Zhan, Z.; Liang, X.; Zhang, X.; Jia, Y.; Hu, M. A Water-Stable Europium- MOF as a Multifunctional Luminescent Sensor for Some Trivalent Metal Ions (Fe3+, Cr3+, Al3+), PO43- Ions, and Nitroaromatic Explosives. Dalton Trans. 2019, 48, 1786–1794.
- 41 Rao, P. C.; Mandal, S. Europium-Based Metal-Organic Framework as a Dual Luminescence Sensor for the Selective Detection of the Phosphate Anion and Fe3+ Ion in Aqueous Media. Inorg. Chem. 2018, 57, 11855–11858.
- 42 Yang, C.; Xu, J.; Li, J.; Lu, M.; Li, Y.; Wang, X. An Efficiently Colorimetric and Fluorescent Probe of Fluoride, Acetate and Phosphate Ions Based on a Novel Trinuclear Eu-Complex. Sens. Actuators, B 2014, 196, 133–139.
- 43 Xu, H.; Cao, C.-S.; Zhao, B. A Water-Stable Lanthanide-Organic Framework as Recyclable Luminescent Probe for Detecting Pollutant Phosphorus Anions. Chem. Commun. 2015, 51, 10280–10283.
- 44 Feng, Y.; Chen, Q.; Jiang, M.; Yao, J. Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Ind. Eng. Chem. Res. 2019, 58, 17646–17659.
- 45 Vandichel, M.; Hajek, J.; Vermoortele, F.; Waroquier, M.; De Vos, D. E.; Van Speybroeck, V. Active Site Engineering in UiO-66 Type Metal- Organic Frameworks by Intentional Creation of Defects: A Theoretical Rationalization. CrystEngComm 2015, 17, 395–406.
- 46 Vandichel, M.; Hajek, J.; Ghysels, A.; De Vos, A.; Waroquier, M.; Van Speybroeck, V. Water Coordination and Dehydration Processes in Defective UiO-66 Type Metal Organic Frameworks. CrystEngComm 2016, 18, 7056–7069.
- 47 Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.
- 48 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
- 49 Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.
- 50 Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 51 Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-Adjusted ab initio Pseudopotentials for the First Row Transition Elements. J. Chem. Phys. 1987, 86, 866–872.