Synthesis of [2,2’]Bifuranyl-5,5’-dicarboxylic Acid Esters via Reductive Homocoupling of 5-Bromofuran-2-carboxylates Using Alcohols as Reductants†
Yi Xie
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorBin Yu
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorJiajun Luo
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorCorresponding Author
Biaolin Yin
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Huanfeng Jiang
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected], [email protected]Search for more papers by this authorYi Xie
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorBin Yu
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorJiajun Luo
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorCorresponding Author
Biaolin Yin
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Huanfeng Jiang
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected], [email protected]Search for more papers by this author†Delicate to the 70th anniversary of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.
Abstract
Herein, we describe an environmentally benign and cost-effective protocol for the synthesis of valuable bifuranyl dicarboxylates, starting with α-bromination of readily accessible furan-2-carboxylates by LiBr and K2S2O8. Furthermore, the bromination intermediate product 5-bromofuran-2-carboxylates were then conducted in a palladium-catalyzed reductive homocoupling reactions in the presence of alcohols to afford bifuranyl dicarboxylates. One of the final products in this protocol, [2,2’]bifuran-5,5’-dicarboxylic acid esters, are essential monomers of poly(ethylene bifuranoate), which can be served as an green and versatile alternative polymer for traditional poly(ethylene terephthalate) that is currently common in technical plastics.
Supporting Information
Filename | Description |
---|---|
cjoc202000303-sup-0001-Supinfo.pdfPDF document, 7.5 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Gallezot, P. Conversion of Biomass to Selected Chemical Products. Chem. Soc. Rev. 2012, 41, 1538–1558.
- 2 Besson, M.; Gallezot, P.; Pinel, C. Conversion of Biomass into Chemicals over Metal Catalysts. Chem. Rev. 2014, 114, 1827–1870.
- 3 Sheldon, R. A. Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 2014, 16, 950–963.
- 4 Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115, 11559–11624.
- 5 Zhang, Z.; Deng, K. Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives. ACS Catal. 2015, 5, 6529–6544.
- 6 Zhang, S.; Lan, J.; Chen, Z.; Yin, G.; Li, G. Catalytic Synthesis of 2,5-Furandicarboxylic Acid from Furoic Acid: Transformation from C5 Platform to C6 Derivatives in Biomass Utilization. ACS Sustain. Chem. Eng. 2017, 5, 9360–9369.
- 7 Kotha, S.; Todeti, S.; Gopal, M. B.; Datta, A. Synthesis and Photophysical Properties of C3-Symmetric Star-Shaped Molecules Containing Heterocycles Such as Furan, Thiophene, and Oxazole. ACS Omega 2017, 2, 6291–6297.
- 8 Sevenich, A.; Liu, G.-Q.; Arduengo, A. J.; Gupton, B. F.; Opatz, T. Asymmetric One-Pot Synthesis of (3R,3aS,6aR)-Hexahydrofuro [2,3-b]furan-3-ol: A Key Component of Current HIV Protease Inhibitors. J. Org. Chem. 2017, 82, 1218–1223.
- 9 Ni, L.; Xin, J.; Jiang, K.; Chen, L.; Yan, D. ; Lu, X.; Zhang, S. One-Step Conversion of Biomass-Derived Furanics into Aromatics by Brønsted Acid Ionic Liquids at Room Temperature. ACS Sustain. Chem. Eng. 2018, 6, 2541–2551.
- 10 Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023–11117.
- 11 Li, X.-L.; Zhang, K.; Jiang, J.-L.; Zhu, R.; Wu, W.-P.; Deng, J. ; Fu, Y. Synthesis of medium-chain carboxylic acids or α,ω-dicarboxylic acids from cellulose-derived platform chemicals. Green Chem. 2018, 20, 362–368.
- 12 Nocito, F.; Ventura, M.; Aresta, M.; Dibenedetto, A. Selective Oxidation of 5-(Hydroxymethyl)furfural to DFF Using Water as Solvent and Oxygen as Oxidant with Earth-Crust-Abundant Mixed Oxides. ACS Omega 2018, 3, 18724–18729.
- 13 Sousa, A. F.; Vilela, C.; Fonseca, A. C.; Matos, M.; Freire, C. S. R.; Gruter, G.-J. M.; Coelhob, J. F. J. ; Silvestre, A. J. D.; Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym. Chem. 2015, 6, 5961–5983.
- 14 Cureton, L. T.; Napadensky, E.; Annunziato, C.; La Scala, J. J. The effect of furan molecular units on the glass transition and thermal degradation temperatures of polyamides. J. Appl. Polym. Sci. 2017, 134, 1–12.
- 15 Long, Y.; Zhang, R.; Huang, J.; Wang, J.; Jiang, Y.; Hu, G.-h.; Yang, J.; Zhu, J. Tensile Property Balanced and Gas Barrier Improved Poly(lactic acid) by Blending with Biobased Poly(butylene 2,5-furan dicarboxylate). ACS Sustain. Chem. Eng. 2017, 5, 9244–9253.
- 16 Jia, Z.; Wang, J.; Sun, L.; Zhu, J.; Liu, X. Fully bio-based polyesters derived from 2,5-furandicarboxylic acid (2,5-FDCA) and dodecanedioic acid (DDCA): From semicrystalline thermoplastic to amorphous elastomer. J. Appl. Polym. Sci. 2018, 135, 46076.
- 17 Kainulainen, T. P.; Sirviö, J. A.; Sethi, J.; Hukka, T. I.; Heiskanen, J. P. UV-Blocking Synthetic Biopolymer from Biomass-Based Bifuran Diester and Ethylene Glycol. Macromolecules 2018, 51, 1822–1829.
- 18 Lomelí-Rodríguez, M.; Corpas-Martínez, J. R.; Willis, S.; Mulholland, R.; Lopez-Sanchez, J. A. Synthesis and Characterization of Renewable Polyester Coil Coatings from Biomass-Derived Isosorbide, FDCA, 1,5-Pentanediol, Succinic Acid, and 1,3-Propanediol. Polymers 2018, 10, 600.
- 19 Sun, L.; Zhang, Y.; Wang, J.; Liu, F.; Jia, Z.; Liu, X.; Zhu, J. 2,5-Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly(ethylene terephthalate) copolyester with enhanced performance. J. Appl. Polym. Sci. 2019, 136, 47186.
- 20
Grigg, R.; Knight, J. A.; Sargent, M. V. Studies in furan chemistry. Part IV. 2, 2′-Bifurans. J. Chem. Soc. C 1966, 976–981.
10.1039/J39660000976 Google Scholar
- 21 Gidron, O.; Diskin-Posner, Y.; Bendikov, M. ɑ-Oligofurans. J. Am. Chem. Soc. 2010, 132, 2148–2150.
- 22 Gidron, O.; Varsano, N.; Shimon, L. J. W.; Leitus, G.; Bendikov, M. Study of a bifuran vs. bithiophene unit for the rational design of pconjugated systems. What have we learned? Chem. Commun. 2013, 49, 6256–6258.
- 23 Jin, X. H.; Sheberla, D.; Shimon, L. J. W.; Bendikov, M. Highly Coplanar Very Long Oligo(alkylfuran)s: A Conjugated System with Specific Head-To-Head Defect. J. Am. Chem. Soc. 2014, 136, 2592–2601.
- 24 Matsidik, R.; Luzio, A.; Askin, Ö.; Fazzi, D.; Sepe, A.; Steiner, U.; Komber, H.; Caironi, M.; Sommer, M. Highly Planarized Naphthalene Diimide−Bifuran Copolymers with Unexpected Charge Transport Performance. Chem. Mater. 2017, 29, 5473–5483.
- 25 Huang, X.; Chen, D.; He, M.; Li, J.; Huang, J.; Li, B. Crystal structure and luminescent properties of novel coordination polymers constructed with bifurandicarboxylic acid. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2017, 73, 715–721.
- 26 Kainulainen, T. P.; Sirviö, J. A.; Sethi, J.; Hukka, T. I.; Heiskanen, J. P. UV-Blocking Synthetic Biopolymer from Biomass-Based Bifuran Diester and Ethylene Glycol. Macromolecules 2018, 51, 1822–1829.
- 27 Juwaini, N. A. B.; Ng, J. K. P.; Seayad, J. Catalytic Regioselective Oxidative Coupling of Furan-2-Carbonyls with Simple Arenes. ACS Catal. 2012, 2, 1787–1791.
- 28 He, C.-Y.; Wang, Z.; Wu, C.-Z.; Qing, F.-L.; Zhang, X. Pd-catalyzed oxidative cross-coupling between two electron rich heteroarenes. Chem. Sci. 2013, 4, 3508–3513
- 29 Li, N.-N.; Zhang, Y.-L.; Mao, S.; Gao, Y.-R.; Guo, D.-D.; Wang, Y.-Q.; Palladium-Catalyzed C—H Homocoupling of Furans and Thiophenes Using Oxygen as the Oxidant. Org. Lett. 2014, 16, 2732–2735.
- 30 Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative Coupling between Two Hydrocarbons: An Update of Recent C−H Functionalizations. Chem. Rev. 2015, 115, 12138–12204.
- 31 McClure, M. S.; Glover, B.; McSorley, E.; Millar, A.; Osterhout, M. H.; Roschangar, F. Regioselective Palladium-Catalyzed Arylation of 2-Furaldehyde. Org. Lett. 2001, 3, 1677–1680.
- 32 Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Regioselective Palladium-Catalyzed Arylation of 3-Carboalkoxy Furan and Thiophene. Org. Lett. 2003, 5, 301–304.
- 33 Derridj, F.; Gottumukkala, A. L.; Djebbar, S.; Doucet, H. Palladium- Catalysed Direct C-H Activation/Arylation of Heteroaromatics: An Environmentally Attractive Access to Bi- or Polydentate Ligands. Eur. J. Inorg. Chem. 2008, 2550–2559.
- 34 Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. Establishment of Broadly Applicable Reaction Conditions for the Palladium-Catalyzed Direct Arylation of Heteroatom-Containing Aromatic Compounds. J. Org. Chem. 2009, 74, 1826–1834.
- 35 Fu, H. Y.; Zhao, L.; Bruneau, C.; Doucet, H. Palladium-Catalysed Direct Heteroarylations of Heteroaromatics Using Esters as Blocking Groups at C2 of Bromofuran and Bromothiophene Derivatives: A One-Step Access to Biheteroaryls. Synlett 2012, 2077–2082.
- 36 Kainulainen, T. P.; Heiskanen, J. P. Palladium catalyzed direct coupling of 5-bromo-2-furaldehyde with furfural and thiophene derivatives. Tetrahedron Lett. 2016, 57, 5012–5016.
- 37 Chen, F.-M.; Huang, F.-D.; Yao, X.-Y.; Li, T.; Liu, F.-S. Direct C–H heteroarylation by an acenaphthylbased α-diimine palladium complex: improvement of the reaction efficiency for bi(hetero)aryls under aerobic conditions. Org. Chem. Front. 2017, 4, 2336–2342.
- 38 Sessler, J. L.; Hoehner, M. C.; Gebauer, A.; Andrievsky, A.; Lynch, V. Synthesis and Characterization of All-Alkyl-Substituted Mono-, Di-, and Trioxosapphyrins. J. Org. Chem. 1997, 62, 9251–9260.
- 39 Lee, K.; Lee, P. H. Efficient homo-coupling reactions of heterocyclic aromatic bromides catalyzed by Pd(OAc)2 using indium. Tetrahedron Lett. 2008, 49, 4302–4305.
- 40 Rieke, R. D.; Kim, S.-H. 5-(1,3-Dioxolan-2-yl)-2-furanylzinc bromide; direct preparation, and its application for the synthesis of 5-substituted furan derivatives. Tetrahedron Lett. 2011, 52, 1128–1131.
- 41 Kim S.-H.; Rieke, R. D. 5-Substituted-2-furaldehydes: A Synthetic Protocol Utilizing an Organozinc Route. J. Org. Chem. 2013, 78, 1984–1993.
- 42 Qiu, Y.; Fortney, A.; Tsai, C.-H.; Baker, M. A.; Gil, R. R.; Kowalewski, T.; Noonan, K. J. T. Synthesis of Polyfuran and Thiophene-Furan Alternating Copolymers Using Catalyst-Transfer Polycondensation. ACS Macro Lett. 2016, 5, 332–336.
- 43 Prugh, J. D.; Huitric, A. C.; McCarthy, W. C. The Synthesis and Proton Magnetic Resonance Spectra of Some Brominated Furans. J. Org. Chem. 1964, 29, 1991–1994.
- 44 Raheem, M.-A.; Nagireddy, J. R.; Durham, R.; Tam, W. Efficient procedure for the preparation of 2-bromofuran and its application in the synthetic of 2-arylfuran. Synth. Commun. 2010, 40, 2138–2146.
- 45 Verkruijsse, H. D.; Keegstra, M. A.; Brandsma, L. A high-yield preparative-scale method for 2-bromofuran. Synth. Commun. 1989, 19, 1047–1049.
- 46 Keegstra, M. A.; Klomp, A. J. A.; Brandsma, L. Convenient synthetic procudures for 2-bromofuran and 2.5-dibromofuran. Synth. Commun. 1990, 20, 3371–3374.
- 47 Gupta, N.; Kad, G. L.; Regioselective Photochemical and Microwave Mediated Monobromination of Aromatic Compounds Using 2,4,4,6–Tetrabromo-2,5-cyclohexadienone. Synth. Commun. 2007, 37, 3421–3428.
- 48 Chartoire, A.; Comoy, C.; Fort, Y.; Furo[3,2-b]pyridine: a convenient unit for the synthesis of polyheterocycles. Tetrahedron 2008, 64, 10867–10873.
- 49 Saikia, I.; Borah, A. J.; Phukan, P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116, 6837–7042.
- 50For a similar reference on the use of alkali-metal/persulfate for the halogenation: Katrun, P.; Kuhakarn, C. K2S2O8-Mediated halogenation of 2-arylimidazo[1,2-a]pyridines using sodium halides as the halogen sources. Tetrahedron Lett. 2019, 60 989–993.
- 51 Hassan, J.; Penalva, V.; Lavenot, L.; Gozzi, C.; Lemaire, M. Catalytic alternative of the Ulimann reaction. Tetrahedron 1998, 54, 13793–13804.
- 52 Zeng, M.; Du, Y.; Shao, L.; Qi, C. Zhang, X.-M. Palladium-Catalyzed Reductive Homocoupling of Aromatic Halides and Oxidation of Alcohols. J. Org. Chem. 2010, 75, 2556–2563.
- 53 Shao, L.; Dub, Y.; Zeng, M.; Lia, X.; Shena, W.; Zuoa, S.; Lua, Y.; Zhang, X.-M.; Qi, C. Ethanol-promoted reductive homocoupling reactions of aryl halides catalyzed by palladium on carbon (Pd/C). Appl. Organometal. Chem. 2010, 24, 421–425.
- 54 Huang, Y.; Liu, L.; Feng, W. Facile palladium-catalyzed homocoupling of aryl halides using 1,4-butanediol as solvent, reductant and O,O-ligand. ChemistrySelect 2016, 3, 630–634.
- 55 Gniewek, A.; Trzeciak, A. M.; Zioł́kowski, J. J.; Kępiński, L.; Wrzyszcz, J.; Tylus, W. Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies. J. Catal. 2005, 229, 332–343.
- 56 Zou, J.; Iyer, K. S.; Stewart, S. G.; Raston, C. L. Scalable synthesis of catalysts for the Mizoroki-Heck cross coupling reaction: palladium nanoparticles assembled in a polymeric nanosphere. New J. Chem. 2011, 35, 854–860.
- 57 Martins, D. D. L.; Alvarez, H. M.; Aguiar, L. C. S.; Antunes, O. A. C. Heck reactions catalyzed by Pd(0)-PVP nanoparticles under conventional and microwave heating. Appl. Catal., A: General 2011, 408, 47–53.
- 58 Tamami, B.; Allahyari, H.; Ghasemi, S.; Farjadian, F. Palladium nanoparticles supported on poly(N-vinylpyrrolidone)-grafted silica as new recyclable catalyst for Heck cross-coupling reactions. J. Organomet. Chem. 2011, 696, 594–599.
- 59 Uberman, P. M.; Pérez, L. A.; Martín, S. E.; Lacconi, G. I. Electrochemical synthesis of palladium nanoparticles in PVP solutions and their catalytic activity in Suzuki and Heck reactions in aqueous medium. RSC Adv. 2014, 4, 12330–12341.
- 60 Rafiee, E.; Joshaghani, M.; Abadi, P. G.-S. Effect of a weak magnetic field on the Mizoroki–Heck coupling reaction in the presence of wicker-like palladium-poly(N-vinylpyrrolidone)-iron nanocatalyst. J. Magn. Magn. Mater. 2016, 408, 107–115.
- 61 García, C. S.; Uberman, P. M.; Martín, S. E. An effective Pd nanocatalyst in aqueous media: stilbene synthesis by Mizoroki–Heck coupling reaction under microwave irradiation. Beilstein J. Org. Chem. 2017, 13, 1717–1727.
- 62 Narayanan, R.; El-Sayed, M. A. Effect of Catalysis on the Stability of Metallic Nanoparticles: Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles. J. Am. Chem. Soc. 2003, 125, 8340–8347.
- 63 Wang, L.; Li, P.-H. Recoverable Palladium(0) on Poly(vinylpyrrolidone) Catalyzed Ligand-free Suzuki Reaction in Water. Chin. J. Chem. 2006, 24, 770–774.
- 64Rafiee1, E.; Kahrizi1, M.; Joshaghani1, M.; Abadi, P. G.-S. New strategy by a two-component heterogeneous catalytic system composed of Pd–PVP–Fe and heteropoly acid as co-catalyst for Suzuki coupling reaction. Res. Chem. Intermed. 2016, 42, 5573–5585.
- 65 Collins, G.; Davitt, F.; O'Dwyer, C.; Holmes, J. D. Comparing Thermal and Chemical Removal of Nanoparticle Stabilizing Ligands: Effect on Catalytic Activity and Stability. ACS Appl. Nano Mater. 2018, 1, 7129–7138.
- 66 Hassan, J.; Hathroubi, C.; Lemaire, M. Tetrahedron 2001, 57, 7845–7855.
- 67 Cepanec, I.; Litvić, M.; Udiković, J.; Pogorelić, I.; Lovric, M. Tetrahedron 2007, 63, 5614–5621.
- 68 Nadri, S.; Azadi, E.; Ataei, A.; Joshaghani, M.; Rafiee, E. J. Organomet. Chem. 2009, 694, 2912–2916.
- 69 Shuji, A.; Tadaatsu, N.; Tetsuya, F.; Yasushi, T.; Toshiaki, T.; Yasuyuki, K. Efficient Lipase-Catalyzed Enantioselective Desymmetrization of Prochiral 2,2-Disubstituted 1,3-Propanediols and Meso 1,2-Diols Using 1-Ethoxyvinyl 2-Furoate. J. Org. Chem. 2002, 67, 411–419.
- 70 Pittelkow, M.; Kamounah, F. S.; Boas, U.; Pedersen, B.; Christensen, J. B. TFFH for Acylation of Alcohols, Thiols and Dithiocarbamates. Synthesis 2004, 15, 2485–2492.