Insights into the Low-temperature Synthesis of LaCoO3 Derived from Co(CH3COO)2 via Electrospinning for Catalytic Propane Oxidation
Yingbin Zheng
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorXiaoshan Feng
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorDaifeng Lin
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorEnhui Wu
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorCorresponding Author
Yongjin Luo
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYufeng You
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorBaoquan Huang
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorCorresponding Author
Qingrong Qian
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
E-mail: [email protected]; [email protected]Search for more papers by this authorQinghua Chen
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Fuqing Branch of Fujian Normal University, Fuqing, Fujian, 350300 China
Search for more papers by this authorYingbin Zheng
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorXiaoshan Feng
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorDaifeng Lin
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorEnhui Wu
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorCorresponding Author
Yongjin Luo
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYufeng You
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorBaoquan Huang
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Search for more papers by this authorCorresponding Author
Qingrong Qian
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
E-mail: [email protected]; [email protected]Search for more papers by this authorQinghua Chen
Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007 China
Fuqing Branch of Fujian Normal University, Fuqing, Fujian, 350300 China
Search for more papers by this authorSummary of main observation and conclusion
A series of electrospun LaCoO3 perovskites derived from CoX2 (X = CH3COO–, NO3–) were prepared and investigated for total propane oxidation. It is shown that pure rhombohedral perovskite LaCoO3 from Co(CH3COO)2 can be obtained at a relatively low temperature, 400 °C, benefitting from the complexation effect of CH3COO–. On the other hand, CH3COO– can accelerate the complete decomposition of polymer. The low-temperature process can protect LaCoO3 nanoparticles from growing up. As a result, Co(CH3COO)2-derived catalysts exhibit better propane oxidation activity than the ones suffered the same thermal treatment by using Co(NO3)2. XPS and H2-TPR analysis provide that there is subtle change in Co3+/Co2+ on bulk/surface of Co(CH3COO)2-derived catalysts prepared at different temperatures, giving rise to similar propane oxidation activities. Moreover, the result of cyclic stability test over 400 °C obtained catalyst shows little deactivation, demonstrating a good thermal stability. Our study can provide a feasible route for energy-saving synthesis of LaCoO3 catalyst applied in the catalytic oxidation of volatile organic compounds (VOCs).
References
- 1 Kamal, M. S.; Razzak, S. A.; Hossain, M. M. Catalytic Oxidation of Volatile Organic Compounds (VOCs) – A Review. Atmos. Environ. 2016, 140, 117–134.
- 2 Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C. Low Temperature Catalytic Oxidation of Volatile Organic Compounds: A Review. Catal. Sci. Technol. 2015, 5, 2649–2669.
- 3 Zhu, Y.; Qian, X. M.; Liu, Z. Y.; Huang, P.; Yuan, M. Q. Analysis and Assessment of the Qingdao Crude Oil Vapor Explosion Accident: Lessons Learnt. J. Loss Prev. Process Ind. 2015, 33, 289–303.
- 4 Shah, P. M.; Day, A. N.; Davies, T. E.; Morgan, D. J.; Taylor, S. H. Mechanochemical Preparation of Ceria-Zirconia Catalysts for the Total Oxidation of Propane and Naphthalene Volatile Organic Compounds. Appl. Catal. B-Environ. 2019, 253, 331–340.
- 5 Solsona, B.; García, T.; Sanchis, R.; Soriano, M. D.; Moreno, M.; Rodríguez-Castellón, E.; Agouram, S.; Dejoz, A.; López Nieto, J. M. Total Oxidation of VOCs on Mesoporous Iron Oxide Catalysts: Soft Chemistry Route Versus Hard Template Method. Chem. Eng. J. 2016, 290, 273–281.
- 6 Zhang, Z. X.; Jiang, Z.; Shangguan, W. F. Low-Temperature Catalysis for VOCs Removal in Technology and Application: A State-of-the-Art Review. Catal. Today 2016, 264, 270–278.
- 7 Li, L.; Liu, S. Q.; Liu, J. X. Surface Modification of Coconut Shell Based Activated Carbon for the Improvement of Hydrophobic VOC Removal. J. Hazard. Mater. 2011, 192, 683–690.
- 8 Malhautier, L.; Quijano, G.; Avezac, M.; Rocher, J.; Fanlo, J. L. Kinetic Characterization of Toluene Biodegradation by Rhodococcus Erythropolis: Towards A Rationale for Microflora Enhancement in Bioreactors Devoted to Air Treatment. Chem. Eng. J. 2014, 247, 199–204.
- 9 Assebban, M.; Tian, Z. Y.; El Kasmi, A.; Bahlawane, N.; Harti, S.; Chafik, T. Catalytic Complete Oxidation of Acetylene and Propene Over Clay Versus Cordierite Honeycomb Monoliths Without and with Chemical Vapor Deposited Cobalt Oxide. Chem. Eng. J. 2015, 262, 1252–1259.
- 10 Ribeiro, F.; Silva, J. M.; Silva, E.; Vaz, M. F.; Oliveira, F. A. C. Catalytic Combustion of Toluene on Pt Zeolite Coated Cordierite Foams. Catal. Today 2011, 176, 93–96.
- 11 Li, W. B.; Wang, J. X.; Gong, H. Catalytic Combustion of VOCs on Non-Noble Metal Catalysts. Catal. Today 2009, 148, 81–87.
- 12 Ren, Q. M.; Feng, Z. T.; Mo, S. P.; Huang, C. L.; Li, S. J.; Zhang, W. X.; Chen, L. M.; Fu, M. L.; Wu, J. L.; Ye, D. Q. 1D-Co3O4; 2D-Co3O4; 3D-Co3O4 for Catalytic Oxidation of Toluene. Catal. Today 2019, 332, 160–167.
- 13 Luo, J. Y.; Meng, M.; Zha, Y. Q.; Guo, L. H. Identification of the Active Sites for CO and C3H8 Total Oxidation Over Nanostructured CuO−CeO2 and Co3O4−CeO2 Catalysts. J. Phys. Chem. C 2008, 112, 8694–8701.
- 14 Bai, B. Y.; Qiao, Q.; Li, J. H.; Hao, J. M. Synthesis of Three-Dimensional Ordered Mesoporous MnO2 and Its Catalytic Performance in Formaldehyde Oxidation. Chin. J. Catal. 2016, 37, 27–31.
- 15 Norsic, C.; Tatibouët, J. M.; Batiot-Dupeyrat, C.; FourrÉ, E. Methanol Oxidation in Dry and Humid Air by Dielectric Barrier Discharge Plasma Combined with MnO2-CuO Based Catalysts. Chem. Eng. J. 2018, 347, 944–952.
- 16 Liu, L. Z.; Li, J. X.; Zhang, H. B.; Li, L.; Zhou, P.; Meng, X. L.; Guo, M. M.; Jia, J. P.; Sun, T. H. In Situ Fabrication of Highly Active Gamma-MnO2/ SmMnO3 Catalyst for Deep Catalytic Oxidation of Gaseous Benzene; Ethylbenzene; Toluene; and O-Xylene. J. Hazard. Mater. 2019, 362, 178–186.
- 17 Nair, M. M.; Kleitz, F.; Kaliaguine, S. Pore Structure Effects on The Kinetics of Methanol Oxidation over Nanocast Mesoporous Perovskites. Chin. J. Catal. 2016, 37, 32–42.
- 18 Hosseini, S. A.; Sadeghi, M. T.; Alemi, A.; Niaei, A.; Salari, D.; Kafi-Ahmadi, L. Synthesis, Characterization, and Performance of LaZnxFe1-xO3 Perovskite Nanocatalysts for Toluene Combustion. Chin. J. Catal. 2010, 31, 747–750.
- 19 He, D. D.; Zhang, Y. L.; Yang, S.; Mei, Y.; Luo, Y. M. Investigation of the Isolated Cr(VI) Species in Cr/MCM-41 Catalysts and Its Effect on Catalytic Activity for Dehydrogenation of Propane. ChemCatChem 2018, 10, 5434–5440.
- 20 Sun, H.; Liu, Z. G.; Chen, S.; Quan, X. The Role of Lattice Oxygen on the Activity and Selectivity of the OMS-2 Catalyst for the Total Oxidation of Toluene. Chem. Eng. J. 2015, 270, 58–65.
- 21 Duan, Y.; Sun, S. N.; Xi, S. B.; Ren, X.; Zhou, Y.; Zhang, G. L.; Yang, H. T.; Du, Y. H.; Xu, Z. C. J. Tailoring the Co 3d-O 2p Covalency in LaCoO3 by Fe Substitution to Promote Oxygen Evolution Reaction. Chem. Mater. 2017, 29, 10534–10541.
- 22 Yao, J. G.; Liu, J.; Hofbauer, H.; Chen, G. Y.; Yan, B. B.; Shan, R.; Li, W. Q. Biomass to Hydrogen-Rich Syngas via Steam Gasification of Bio-Oil/Biochar Slurry Over LaCo1−xCuxO3 Perovskite-Type Catalysts. Energy Conv. Manag. 2016, 117, 343–350.
- 23 Huang, H. F.; Liu, Y. Q.; Tang, W.; Chen, Y. F. Catalytic Activity of Nanometer La1−xSrxCoO3 (x=0, 0.2) Perovskites Towards VOCs Combustion. Catal. Commun. 2008, 9, 55–59.
- 24 Zhu, X. B.; Zhang, S.; Yang, Y.; Zheng, C. H.; Zhou, J. S.; Gao, X.; Tu, X. Enhanced Performance for Plasma-Catalytic Oxidation of Ethyl Acetate Over La1-xCexCoO3+δ Catalysts. Appl. Catal. B-Environ. 2017, 213, 97–105.
- 25 Luo, Y. J.; Wang, K. C.; Chen, Q. H.; Xu, Y. X.; Xue, H.; Qian, Q. R. Preparation and Characterization of Electrospun La1-xCexCoOδ: Application to Catalytic Oxidation of Benzene. J. Hazard. Mater. 2015, 296, 17–22.
- 26 Wu, Y. H.; Li, G. Y.; Chu, B. X.; Dong, L. H.; Tong, Z. F.; He, H. X.; Zhang, L. L.; Fan, M. G.; Li, B.; Dong, L. NO Reduction by CO Over Highly Active and Stable Perovskite Oxide Catalysts La0.8Ce0.2M0.25Co0.75O3 (M = Cu, Mn, Fe): Effect of The Role in B Site. Ind. Eng. Chem. Res. 2018, 57, 15670–15682.
- 27 Wu, M. H.; Luo, M. P.; Guo, M. X.; Jia, L. S. Sugarcane Bagasse Hydrolysis by Metal Ions Mediated Synthesis of Perovskite LaCoO3 and the Photocatalytic Performance for Hydrogen from Formaldehyde Solution Under Visible Light. ACS Sustain. Chem. Eng. 2017, 5, 11558–11565.
- 28 Yang, Q. L.; Wang, D.; Wang, C. Z.; Li, X. F.; Li, K. Z.; Peng, Y.; Li, J. H. Facile Surface Improvement Method for LaCoO3 for Toluene Oxidation. Catal. Sci. Technol. 2018, 8, 3166–3173.
- 29 Surendar, M.; Sagar, T. V.; Raveendra, G.; Ashwani Kumar, M.; Lingaiah, N.; Rama Rao, K. S.; Sai Prasad, P. S. Pt Doped LaCoO3 Perovskite: A Precursor for A Highly Efficient Catalyst for Hydrogen Production from Glycerol. Int. J. Hydrog. Energy 2016, 41, 2285–2297.
- 30 Wang, S.; Xu, X. L.; Zhu, J. J.; Tang, D. H.; Zhao, Z. Effect of Preparation Method on Physicochemical Properties and Catalytic Performances of LaCoO3 Perovskite for CO Oxidation. J. Rare Earths 2019, 37, 970–977.
- 31 Kim, J.; Chen, X. X.; Shih, P. C.; Yang, H. Porous Perovskite-Type Lanthanum Cobaltite as Electrocatalysts toward Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2017, 5, 10910–10917.
- 32 Suh, M. J.; Park, Y. K.; Ihm, S. K. One-Pot Synthesis of Perovskite-Type Metal Oxides via Confined Mesopore and Their Catalytic Activity for Toluene Oxidation. Catal. Today 2016, 265, 210–217.
- 33 Ding, J. C.; Li, H. Y.; Cai, Z. X.; Wang, X. X.; Guo, X. Near Room Temperature CO Sensing by Mesoporous LaCoO3 Nanowires Functionalized with Pd Nanodots. Sens. Actuators-Chem. 2016, 222, 517–524.
- 34 Huang, K. K.; Chu, X. F.; Feng, W. C.; Zhou, C. P.; Si, W. Z.; Wu, X. F.; Yuan, L.; Feng, S. H. Catalytic Behavior of Electrospinning Synthesized La0.75Sr0.25MnO3 Nanofibers in the Oxidation of CO and CH4. Chem. Eng. J. 2014, 244, 27–32.
- 35 Luo, Y. J.; Wang, K. C.; Zuo, J. C.; Qian, Q. R.; Xu, Y. X.; Liu, X. P.; Xue, H.; Chen, Q. H. Enhanced Activity for Total Benzene Oxidation over SBA-15 Assisted Electrospun LaCoO3. Mol. Catal. 2017, 436, 259–266.
- 36 Luo, Y. J.; Zuo, J. C.; Lin, D. F.; Qian, Q. R.; Zheng, Y. B.; Feng, X. S.; Huang, B. Q.; Chen, Q. H. Anchoring Pt On Surface/Bulk of LaCoO3 Nanotubes via One Step of Coaxial Electrospinning for Efficient Total Propane Oxidation. Mol. Catal. 2019, 475, 110504.
- 37 Chan, K. H.; Chu, W. Degradation of Atrazine by Cobalt-Mediated Activation of Peroxymonosulfate: Different Cobalt Counteranions in Homogenous Process and Cobalt Oxide Catalysts in Photolytic Heterogeneous Process. Water Res. 2009, 43, 2513–2521.
- 38 Wan, G.; Yang, C.; Zhao, W. P.; Li, Q. R.; Wang, N.; Li, T.; Zhou, H.; Chen, H. C.; Shi, J. L. Anion-Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis. Adv. Mater. 2017, 29, 1703436.
- 39 He, R. X.; Jiang, H. Q.; Wu, F.; Zhi, K. D.; Wang, N.; Zhou, C. L.; Liu, Q. S. Effect of Anions on the Structure and Catalytic Properties of A La-Doped Cu-Mn Catalyst in the Water-Gas Shift Reaction. Chem. Pap. 2014, 68, 1049–1058.
- 40 Ataie, A.; Heshmati-Manesh, S.; Kazempour, H. Synthesis of Barium Hexaferrite by the Co-Precipitation Method Using Acetate Precursor. J. Mater. Sci. 2002, 37, 2125–2128.
- 41 Predoana, L.; Malic, B.; Petrescu, S.; Preda, S.; Zaharescu, M. Influence of the Precursors on the La0.5Sr0.5CoO3 Formation by Water-based Sol-gel Method. Rev. Roum. Chim. 2018, 63, 711–718.
- 42 Luo, Y. J.; Zuo, J. C.; Feng, X. S.; Qian, Q. R.; Zheng, Y. B.; Lin, D. F.; Huang, B. Q.; Chen, Q. H. Good Interaction Between Well Dispersed Pt and LaCoO3 Nanorods Achieved Rapid Co3+/Co2+ Redox Cycle for Total Propane Oxidation. Chem. Eng. J. 2019, 357, 395–403.
- 43 Barbero, B. P.; Gamboa, J. A.; Cadús, L. E. Synthesis and Characterisation of La1−xCaxFeO3 Perovskite-type Oxide Catalysts for Total Oxidation of Volatile Organic Compounds. Appl. Catal. B-Environ. 2006, 65, 21–30.
- 44 Hirano, T.; Purwanto, H.; Watanabe, T.; Akiyama, T. Self-propagating High-temperature Synthesis of Sr-doped LaMnO3 Perovskite as Oxidation Catalyst. J. Alloy Compd. 2007, 441, 263–266.
- 45 Merino, N.; Barbero, B.; Grange, P.; Cadus, L. La1-xCaxCoO3 Perovskite-type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane. J. Catal. 2005, 231, 232–244.
- 46 Esmaeilnejad-Ahranjani, P.; Khodadadi, A.; Ziaei-Azad, H.; Mortazavi, Y. Effects of Excess Manganese in Lanthanum Manganite Perovskite on Lowering Oxidation Light-off Temperature for Automotive Exhaust Gas Pollutants. Chem. Eng. J. 2011, 169, 282–289.
- 47 Panpranot, J.; Kaewkun, S.; Praserthdam, P.; Goodwin, J. G. Effect of Cobalt Precursors on the Dispersion of Cobalt on MCM-41. Catal. Lett. 2003, 91, 95–102.
- 48 Song, W. Q.; Poyraz, A. S.; Meng, Y. T.; Ren, Z.; Chen, S. Y.; Suib, S. L. Mesoporous Co3O4 with Controlled Porosity: Inverse Micelle Synthesis and High-Performance Catalytic CO Oxidation At −60 °C. Chem. Mater. 2014, 26, 4629–4639.
- 49 Zhang, W. D.; Wu, F.; Li, J. J.; You, Z. X. Dispersion-Precipitation Synthesis of Highly Active Nanosized Co3O4 for Catalytic Oxidation of Carbon Monoxide and Propane. Appl. Surf. Sci. 2017, 411, 136–143.
- 50 Fang, F.; Feng, N. J.; Wang, L.; Meng, J.; Liu, G.; Zhao, P.; Gao, P. F.; Ding, J.; Wan, H.; Guan, G. F. Fabrication of Perovskite-Type Macro/Mesoporous La1-xKxFeO3-δ Nanotubes as an Efficient Catalyst for Soot Combustion. Appl. Catal. B-Environ. 2018, 236, 184–194.
- 51 Xie, Y. J.; Guo, Y.; Guo, Y. L.; Wang, L.; Zhan, W. C.; Wang, Y. S.; Gong, X. Q.; Lu, G. Z. A Highly-Efficient La-MnOx Catalyst for Propane Combustion: The Promotional Role of La and the Effect of the Preparation Method. Catal. Sci. Technol. 2016, 6, 8222–8233.