Recovery of lithium from salt-lake brine by liquid–liquid extraction using TBP-FeCl3 based mixture solvent
Linju Qiao
National Engineering Research Center for Integrated Utilization of Salt-lake Resource, East China University of Science and Technology, Shanghai, China
Engineering Research Center of Resource Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai, China
Joint International Laboratory for Potassium and Lithium Strategic Resources East China University of Science and Technology, Shanghai, China
Contribution: Investigation, Validation, Visualization, Writing - original draft
Search for more papers by this authorCorresponding Author
Hang Chen
National Engineering Research Center for Integrated Utilization of Salt-lake Resource, East China University of Science and Technology, Shanghai, China
Engineering Research Center of Resource Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai, China
Joint International Laboratory for Potassium and Lithium Strategic Resources East China University of Science and Technology, Shanghai, China
Correspondence
Hang Chen and Jianguo Yu, East China University of Science and Technology, Shanghai 200237, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Writing - review & editing
Search for more papers by this authorCorresponding Author
Jianguo Yu
National Engineering Research Center for Integrated Utilization of Salt-lake Resource, East China University of Science and Technology, Shanghai, China
Engineering Research Center of Resource Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai, China
Joint International Laboratory for Potassium and Lithium Strategic Resources East China University of Science and Technology, Shanghai, China
Correspondence
Hang Chen and Jianguo Yu, East China University of Science and Technology, Shanghai 200237, China.
Email: [email protected] and [email protected]
Contribution: Project administration, Resources
Search for more papers by this authorLinju Qiao
National Engineering Research Center for Integrated Utilization of Salt-lake Resource, East China University of Science and Technology, Shanghai, China
Engineering Research Center of Resource Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai, China
Joint International Laboratory for Potassium and Lithium Strategic Resources East China University of Science and Technology, Shanghai, China
Contribution: Investigation, Validation, Visualization, Writing - original draft
Search for more papers by this authorCorresponding Author
Hang Chen
National Engineering Research Center for Integrated Utilization of Salt-lake Resource, East China University of Science and Technology, Shanghai, China
Engineering Research Center of Resource Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai, China
Joint International Laboratory for Potassium and Lithium Strategic Resources East China University of Science and Technology, Shanghai, China
Correspondence
Hang Chen and Jianguo Yu, East China University of Science and Technology, Shanghai 200237, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Writing - review & editing
Search for more papers by this authorCorresponding Author
Jianguo Yu
National Engineering Research Center for Integrated Utilization of Salt-lake Resource, East China University of Science and Technology, Shanghai, China
Engineering Research Center of Resource Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai, China
Joint International Laboratory for Potassium and Lithium Strategic Resources East China University of Science and Technology, Shanghai, China
Correspondence
Hang Chen and Jianguo Yu, East China University of Science and Technology, Shanghai 200237, China.
Email: [email protected] and [email protected]
Contribution: Project administration, Resources
Search for more papers by this authorFunding information: National Natural Science Foundation of China, Grant/Award Number: 22078101; Shanghai Chen Guang project, Grant/Award Number: 19CG34
Abstract
In this study, a complete cyclic process was developed for the lithium extraction from high-concentration salt-lake brine by using a high flash point, low water solubility, and low toxicity diluent mixed with the TBP-FeCl3-based organic solvent. The process was composed of four sections, including extraction, scrubbing, stripping, and regeneration. The optimal conditions for each section were determined first. Then, a 13-stage cyclic extraction process was designed and validated experimentally for the high lithium concentration brine, which reached 8.612 g/L. By using the diluent at the optimized conditions, the overall recovery of lithium was higher than 96%. The stripping liquid contained 38.87 g/L Li+, while all the ratios of impurities of sodium, potassium, and magnesium to lithium were less than 0.1. The aims of enrichment and purification of Li+ from the complicated brine system were achieved by the developed extraction process with little Fe loss, which provided the technical support for the development of the salt-lake lithium resource.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1W. G. Lv, Z. H. Wang, H. B. Cao, Y. Sun, Y. Zhang, Z. Sun, ACS Sustainable Chem. Eng. 2018, 6, 1504.
- 2D. J. Shin, S.-H. Joo, D. Lee, S. M. Shin, Can. J. Chem. Eng. 2022. https://doi.org/10.1002/cjce.24368
- 3M. Meng, J. McNeice, S. S. Zadeh, A. Ghahreman, Miner. Process. Extr. Metall. Rev. 2021, 42, 123.
- 4S. E. Kesler, P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson, T. J. Wallington, Ore Geol. Rev. 2012, 48, 55.
- 5B. Swain, Sep. Purif. Technol. 2017, 172, 388.
- 6L. Li, V. G. Deshmane, M. P. Paranthaman, R. Bhave, B. A. Moyer, S. Harrison, Johnson Matthey Technol. Rev. 2018, 62, 161.
- 7F. Yang, S. C. Chen, C. T. Shi, F. Xue, X. X. Zhang, S. G. Ju, W. H. Xing, Processes 2018, 6, 1.
- 8H. Jiang, Y. Yang, S. Sun, J. Yu, Can. J. Chem. Eng. 2020, 98, 544.
- 9X. H. Liu, M. L. Zhong, X. Y. Chen, Z. W. Zhao, Hydrometallurgy 2018, 176, 73.
- 10N. Heidari, P. Momeni, Environ. Earth Sci. 2017, 76, 551.
- 11D. F. Liu, S. Y. Sun, J. G. Yu, CIESC J. 2018, 69, 141.
- 12S. Y. Sun, L. J. Cai, X. Y. Nie, X. F. Song, J. G. Yu, Journal of Water Process Engineering 2015, 7, 210.
- 13X. Y. Nie, S. Y. Sun, X. F. Song, Z. Sun, J. G. Yu, Desalination 2017, 403, 128.
- 14Z. Y. Ji, Q. B. Chen, J. S. Yuan, J. Liu, Y. Y. Zhao, W. X. Feng, Sep. Purif. Technol. 2017, 172, 168.
- 15G. Liu, Z. W. Zhao, L. H. He, Desalination 2020, 474, 1.
- 16B. Swain, J. Chem. Technol. Biotechnol. 2016, 91, 2549.
- 17H. F. Li, L. J. Li, W. Li, L. M. Ji, D. H. Zhu, Chem. Phys. Lett. 2020, 754, 137692.
- 18H. F. Li, L. J. Li, D. Shi, J. F. Li, L. M. Ji, X. W. Peng, F. Nie, F. G. Song, Z. M. Zeng, Hydrometallurgy 2016, 160, 1.
- 19L. C. Zhang, L. J. Li, D. Shi, X. W. Peng, F. G. Song, F. Nie, Sep. Purif. Technol. 2019, 211, 917.
- 20X. P. Yu, X. B. Fan, Y. F. Guo, T. L. Deng, Sep. Purif. Technol. 2019, 211, 790.
- 21H. Yi, Y. Wang, K. H. Smith, W. Y. Fei, S. Geoffrey, Ind. Eng. Chem. Res. 2017, 56, 999.
- 22Q. Sun, H. Chen, J. G. Yu, Chem. Eng. Process. 2021, 169, 108596.
- 23G. Liu, Z. W. Zhao, A. Ghahreman, Hydrometallurgy 2019, 187, 81.
- 24H. M. Rui, L. C. Zhang, L. J. Li, L. X. Zhu, Chem. Phys. Lett. 2021, 771, 138510.
- 25J. F. Wang, S. C. Yang, R. B. Bai, Y. M. Chen, S. J. Zhang, Ind. Eng. Chem. Res. 2019, 58, 1363.
- 26C. L. Shi, Y. Z. Jia, J. Xiao, X. Q. Wang, Y. Yao, J. Mol. Liq. 2016, 224, 662.
- 27X. Q. Wang, Y. Jing, H. Liu, Y. Yao, C. L. Shi, J. Xiao, S. Wang, Y. Z. Jia, Chem. Phys. Lett. 2018, 707, 8.
- 28Z. Y. Zhou, H. T. Liu, J. H. Fan, X. T. Liu, Y. F. Hu, Y. L. Hu, Y. Wang, Z. Q. Ren, ACS Sustainable Chem. Eng. 2019, 7, 8885.
- 29Y. Wang, H. T. Liu, J. H. Fan, X. T. Liu, Y. F. Hu, Y. L. Hu, Z. Y. Zhou, Z. Q. Ren, ACS Sustainable Chem. Eng. 2019, 7, 3062.
- 30Z. Q. Ren, X. Y. Wei, R. J. Li, W. H. Wang, Y. Y. Wang, Z. Y. Zhou, Sep. Purif. Technol. 2021, 269, 118756.
- 31H. Su, Z. Li, J. Zhang, Z. W. Zhu, L. N. Wang, T. Qi, Hydrometallurgy 2020, 197, 105487.
- 32H. F. Li, L. J. Li, W. Li, Chem. Phys. Lett. 2020, 754, 137675.
- 33H. F. Li, L. J. Li, W. Li, Chem. Phys. Lett. 2022, 791, 139371.
- 34Z. Y. Zhou, W. Qin, W. Y. Fei, J. Chem. Eng. Data 2011, 56, 3518.
- 35L. M. Ji, L. J. Li, D. Shi, J. F. Li, Z. Q. Liu, D. F. Xu, X. X. Song, Hydrometallurgy 2016, 164, 304.
- 36L. M. Ji, Y. H. Hu, L. J. Li, D. Shi, J. F. Li, F. Nie, F. G. Song, Z. M. Zeng, W. Sun, Z. Q. Liu, Hydrometallurgy 2016, 162, 71.
- 37H. F. Li, L. J. Li, L. M. Ji, X. W. Peng, W. Li, Chem. Phys. Lett. 2019, 733, 136668.
- 38Z. Y. Zhou, S. K. Liang, W. Qin, W. Y. Fei, Ind. Eng. Chem. Res. 2013, 52, 7912.
- 39H. F. Li, L. J. Li, X. W. Peng, L. M. Ji, Chin. J. Chem. Eng. 2019, 27, 335.
- 40Z. Y. Zhou, W. Qin, S. K. Liang, Y. Z. Tan, W. Y. Fei, Ind. Eng. Chem. Res. 2012, 51, 12926.
- 41H. Su, B. R. Tan, J. Zhang, W. S. Liu, L. N. Wang, Y. Wang, Z. W. Zhu, T. Qi, Sep. Purif. Technol. 2022, 282, 120110.
- 42Z. Y. Zhou, W. Qin, Y. F. Chu, W. Y. Fei, Chem. Eng. Sci. 2013, 101, 577.
- 43Q. Sun, H. Chen, J. G. Yu, Ind. Eng. Chem. Res. 2022, 61, 4672. https://doi.org/10.1021/acs.iecr.1c05072
- 44H. F. Li, L. J. Li, W. Li, Chem. Phys. Lett. 2021, 763, 138249.
- 45Z. Y. Zhou, W. Qin, W. Y. Fei, J. Chem. Eng. Data 2012, 57, 82.
- 46H. F. Li, L. J. Li, W. Li, Y. Q. Zhou, Chem. Phys. Lett. 2020, 754, 137740.
- 47D. Shi, B. Cui, L. J. Li, X. W. Peng, L. C. Zhang, Y. Z. Zhang, Sep. Purif. Technol. 2019, 211, 303.
- 48D. Shi, L. C. Zhang, X. W. Peng, L. J. Li, F. G. Song, F. Nie, L. M. Ji, Y. Z. Zhang, Desalination 2018, 441, 44.