Research progress on novel solar steam generation system based on black nanomaterials
Chao Xu
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Search for more papers by this authorQian Yang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Search for more papers by this authorFuxian Wang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Search for more papers by this authorCorresponding Author
Xiaoming Fang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Author to whom correspondence may be addressed. E-mail address: [email protected] (X. Fang); [email protected] (Z. Zhang)
Search for more papers by this authorCorresponding Author
Zhengguo Zhang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Author to whom correspondence may be addressed. E-mail address: [email protected] (X. Fang); [email protected] (Z. Zhang)
Search for more papers by this authorChao Xu
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Search for more papers by this authorQian Yang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Search for more papers by this authorFuxian Wang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Search for more papers by this authorCorresponding Author
Xiaoming Fang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Author to whom correspondence may be addressed. E-mail address: [email protected] (X. Fang); [email protected] (Z. Zhang)
Search for more papers by this authorCorresponding Author
Zhengguo Zhang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510 640, Guangdong, China
Author to whom correspondence may be addressed. E-mail address: [email protected] (X. Fang); [email protected] (Z. Zhang)
Search for more papers by this authorAbstract
Among all the renewable energy sources, solar irradiation has the greatest potential to meet the world's future energy demands. The solar-driven generation of water steam has emerged as a promising route for solar energy utilization in the fields of global water cycle, seawater desalination, high-temperature sterilization, and wastewater treatment. A typical solar thermal energy converting process involves heat harvesting by solar thermal absorber and heat stimulating the evaporation of water via sensible heat and latent heat. In this review, the novel direct solar steam generation systems based on black nanomaterials are presented. These direct solar steam production systems can be categorized into the following two types: nanofluid-based evaporation systems and suspended interface evaporation systems. We describe the physical model and experimental results of these systems, as well as the determination of optimal evaporation system design according to excellent evaporation performance. Finally, we elucidate the dominant factors influencing the evaporation efficiency and propose improved approaches to further increase solar steam production efficiency for the discovery of practical applications.
REFERENCES
- 1 H. Price, E. Lupfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, R. Mahoney, J. Sol. Energ.-T. ASME 2002, 124, 109.
- 2 Y. Wang, Y. Si, B. Huang, Z. Lou, Can. J. Chem. Eng. 2018, 96, 2073.
- 3 E. Zarza, L. Valenzuela, J. Leon, K. Hennecke, M. Eck, H. D. Weyers, M. Eickhoff, Energy 2004, 29, 635.
- 4 L. L. Chen, C. Xu, J. Liu, X. M. Fang, Z. G. Zhang, Sol. Energy 2017, 148, 17.
- 5 G. Ni, N. Miljkovic, H. Ghasemi, X. P. Huang, S. V. Boriskina, C. T. Lin, J. J. Wang, Y. F. Xu, M. M. Rahman, T. J. Zhang, G. Chen, Nano Energy 2015, 17, 290.
- 6 X. Z. Wang, Y. R. He, G. Cheng, L. Shi, X. Liu, J. Q. Zhu, Energ. Convers. Manage. 2016, 130, 176.
- 7 S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, T. Nagao, Opt. Mater. Express 2016, 6, 640.
- 8 F. J. Tao, Y. L. Zhang, F. H. Zhang, K. Wang, X. T. Chang, Y. An, L. H. Dong, Y. S. Yin, Chemistry Select 2017, 2, 3039.
- 9 O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, N. J. Halas, P. Natl. Acad. Sci. USA 2013, 110, 11677.
- 10 Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. Garcia de Abajo, P. Nordlander, N. J. Halas, Nano Lett. 2013, 13, 1736.
- 11 M. Amjad, G. Raza, Y. Xin, S. Pervaiz, J. Xu, X. Du, D. Wen, Appl. Energ. 2017, 206, 393.
- 12 Z. J. Lin, S. H. Liu, J. G. Li, J. L. Chen, M. Xie, X. D. Li, M. Zhang, Q. Zhu, D. Huo, X. D. Sun, Mater. Design 2016, 108, 640.
- 13 X. Wang, Y. He, X. Liu, L. Shi, J. Zhu, Sol. Energy 2017, 157, 35.
- 14 N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, N. J. Halas, Nano Lett. 2014, 14, 4640.
- 15 S. Ishii, R. P. Sugavaneshwar, T. Nagao, J. Phys. Chem. C. 2016, 120, 2343.
- 16 B. Sharma, M. K. Rabinal, J. Alloy. Compd. 2017, 690, 57.
- 17 D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, T. Deng, Sci. Rep.-UK 2015, 5, 17276.
- 18 M. S. Zielinski, J. W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, D. Psaltis, Nano Lett. 2016, 16, 2159.
- 19 L. Shi, Y. He, Y. Huang, B. Jiang, Energ. Convers. Manage. 2017, 149, 401.
- 20 W. Chen, C. Zou, X. Li, H. Liang, Desalination 2017, https://doi.org/10.1016/j.desal.2017.09.025.
- 21 X. Wang, G. Ou, N. Wang, H. Wu, ACS Appl. Mater. Inter. 2016, 8, 9194.
- 22 O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, N. J. Halas, ACS Nano 2013, 7, 42.
- 23 H. C. Jin, G. P. Lin, L. Z. Bai, A. Zeiny, D. S. Wen, Nano Energy 2016, 28, 397.
- 24 Y. Zeng, K. Wang, J. F. Yao, H. T. Wang, Chem. Eng. Sci. 2014, 116, 704.
- 25 Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Adv. Mater. 2015, 27, 4302.
- 26 X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Adv. Mater. 2017, 29, 1604031.
- 27 Y. Fu, G. Wang, T. Mei, J. Li, J. Wang, X. Wang, ACS Sustain. Chem. Eng. 2017, 5, 4665.
- 28 S. Ma, C. P. Chiu, Y. Zhu, C. Y. Tang, H. Long, W. Qarony, X. Zhao, X. Zhang, W. H. Lo, Y. H. Tsang, Appl. Energ. 2017, 206, 63.
- 29 C. Zhang, C. Yan, Z. Xue, W. Yu, Y. Xie, T. Wang, Small 2016, 12, 5320.
- 30 G. Zhu, J. Xu, W. Zhao, F. Huang, ACS Appl. Mater. Inter. 2016, 8, 31716.
- 31 L. Zhu, M. Gao, C. K. N. Peh, X. Wang, G. W. Ho, Adv. Energy Mater. 2018, 8, 1702149.
- 32 X. Huang, Y. H. Yu, O. L. de Llergo, S. M. Marquez, Z. Cheng, RSC Adv. 2017, 7, 9495.
- 33 Y. Zeng, J. Yao, B. A. Horri, K. Wang, Y. Wu, D. Li, H. Wang, Energ. Environ. Sci. 2011, 4, 4047.
- 34 J. Zhou, Z. Sun, M. Chen, J. Wang, W. Qiao, D. Long, L. Ling, Adv. Funct. Mater. 2016, 26, 5368.
- 35 L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 2015, 27, 4889.
- 36 Y. Yang, R. Zhao, T. Zhang, K. Zhao, P. Xiao, Y. Ma, P. M. Ajayan, G. Shi, Y. Chen, ACS Nano 2018, 12, 829.
- 37 Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, T. Deng, Small 2014, 10, 3234.
- 38 L. Shi, Y. Wang, L. Zhang, P. Wang, J. Mater. Chem. A 2017, 5, 16212.
- 39 G. Wang, Y. Fu, A. Guo, T. Mei, J. Wang, J. Li, X. Wang, Chem. Mater. 2017, 29, 5629.
- 40 G. Wang, Y. Fu, X. Ma, W. Pi, D. Liu, X. Wang, Carbon 2017, 114, 117.
- 41 J. Yang, Y. Pang, W. Huang, S. K. Shaw, J. Schiffbauer, M. A. Pillers, X. Mu, S. Luo, T. Zhang, Y. Huang, G. Li, S. Ptasinska, M. Lieberman, T. Luo, ACS Nano 2017, 11, 5510.
- 42 Z. Wang, Q. Ye, X. Liang, J. Xu, C. Chang, C. Song, W. Shang, J. Wu, P. Tao, T. Deng, J. Mater. Chem. A 2017, 5, 16359.
- 43 Y. Liu, J. Chen, D. Guo, M. Cao, L. Jiang, ACS Appl. Mater. Inter. 2015, 7, 13645.
- 44 P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, ACS Nano 2017, 11, 5087.
- 45 J. Lou, Y. Liu, Z. Wang, D. Zhao, C. Song, J. Wu, N. Dasgupta, W. Zhang, D. Zhang, P. Tao, W. Shang, T. Deng, ACS Appl. Mater. Inter. 2016, 8, 14628.
- 46 Y. Wang, C. Wang, X. Song, S. K. Megarajan, H. Jiang, J. Mater. Chem. A 2018, 6, 963.
- 47 G. Xue, K. Liu, Q. Chen, P. Yang, J. Li, T. Ding, J. Duan, B. Qi, J. Zhou, ACS Appl. Mater. Inter. 2017, 9, 15052.
- 48 M. Zhu, Y. Li, G. Chen, F. Jiang, Z. Yang, X. Luo, Y. Wang, S. D. Lacey, J. Dai, C. Wang, C. Jia, J. Wan, Y. Yao, A. Gong, B. Yang, Z. Yu, S. Das, L. Hu, Adv. Mater. 2017, 29, 1704107.
- 49 T. Li, H. Liu, X. Zhao, G. Chen, J. Dai, G. Pastel, C. Jia, C. Chen, E. Hitz, D. Siddhartha, R. Yang, L. Hu, Adv. Funct. Mater. 2018, 28, 1707134.
- 50 C. Chang, C. Yang, Y. Liu, P. Tao, C. Song, W. Shang, J. Wu, T. Deng, ACS Appl. Mater. Inter. 2016, 8, 23412.
- 51 X. Wang, Y. He, X. Liu, G. Cheng, J. Zhu, Appl. Energ. 2017, 195, 414.
- 52 K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, W. J. Padilla, Nat. Commun. 2015, 6, 10103.
- 53 L. Yi, S. Ci, S. Luo, P. Shao, Y. Hou, Z. Wen, Nano Energy 2017, 41, 600.
- 54 M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P. G. O'Brien, W. Sun, Y. Dong, G. A. Ozin, Adv. Energy Mater. 2017, 7, 1601811.
- 55 H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Nat. Commun. 2014, 5, 4449.
- 56 G. Ni, G. Li, S. V. Boriskina, H. Li, W. Yang, T. Zhang, G. Chen, Nature Energy 2016, 1, 16126.
- 57 S. M. Sajadi, N. Farokhnia, P. Irajizad, M. Hasnain, H. Ghasemi, J. Mater. Chem. A 2016, 4, 4700.
- 58 Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, T. Deng, Adv. Mater. 2015, 27, 2768.
- 59 S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, T. Deng, Sci. Rep.-UK 2015, 5, 13600.
- 60 L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Science Advances 2016, 2, 1501227.
- 61 L. Zhou, S. D. Zhuang, C. Y. He, Y. L. Tan, Z. L. Wang, J. Zhu, Nano Energy 2017, 32, 195.
- 62 L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photonics 2016, 10, 393.
- 63 N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Mater. 2017, 29, 1606762.
- 64 H. Liu, X. Zhang, Z. Hong, Z. Pu, Q. Yao, J. Shi, G. Yang, B. Mi, B. Yang, X. Liu, H. Jiang, X. Hu, Nano Energy 2017, 42, 115.
- 65 X. Li, R. Lin, G. Ni, N. Xu, X. Hu, B. Zhu, G. Lv, J. Li, S. Zhu, J. Zhu, Natl. Sci. Rev. 2017, 5, 70.
- 66 X. Q. Li, W. C. Xu, M. Y. Tang, L. Zhou, B. Zhu, S. N. Zhu, J. Zhu, P. Natl. Acad. Sci. USA 2016, 113, 13953.
- 67 Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo, J. Song, E. Hitz, C. Jia, Y. Zhou, B. Liu, B. Yang, L. Hu, Adv. Mater. 2017, 29, 1700981.
- 68 Y. Li, T. Gao, Z. Yang, C. Chen, Y. Kuang, J. Song, C. Jia, E. M. Hitz, B. Yang, L. Hu, Nano Energy 2017, 41, 201.
- 69 L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, S. Singamaneni, Nano Lett. 2016, 16, 609.
- 70 Y. Liu, J. Lou, M. Ni, C. Song, J. Wu, N. P. Dasgupta, P. Tao, W. Shang, T. Deng, ACS Appl. Mater. Inter. 2016, 8, 772.
- 71 P. H. Yang, K. Liu, Q. Chen, J. Li, J. J. Duan, G. B. Xue, Z. S. Xu, W. K. Xie, J. Zhou, Energ. Environ. Sci. 2017, 10, 1923.
- 72 Z. Liu, H. Song, D. Ji, C. Li, A. Cheney, Y. Liu, N. Zhang, X. Zeng, B. Chen, J. Gao, Y. Li, X. Liu, D. Aga, S. Jiang, Z. Yu, Q. Gan, Global Challenges 2017, 1, 1600003.