Numerical Simulation on Gas–Solid Flow Characteristics in Circulating Fluidized Bed Desulfurization Tower
Miaomin Hong
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Guiling Xu
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023 China
E-mail: [email protected]
Search for more papers by this authorPing Lu
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorQi Zhang
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorMiaomin Hong
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Guiling Xu
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023 China
E-mail: [email protected]
Search for more papers by this authorPing Lu
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorQi Zhang
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorAbstract
Circulating fluidized bed flue gas desulfurization (CFB-FGD) is a semi-dry desulfurization technology. The tower structure significantly influences gas–solid flow, critical to desulfurization efficiency. Tower bottom, diffusion section, and bypass tubes are numerically simulated. Two indices, CV value (assessing particle uniformity) and mass-weighted life of particles (determining particle residence time), are employed for quantitative analysis. Results show that adjusting tower bottom structure minimally affects gas-particle distribution. Increasing diffusion section height reduces backflow area. Larger bypass tube diameter improves gas uniformity. Particles concentrate in the mainstream zone, reducing wall collisions. This study would be conducive to providing a theoretical basis for the optimal design of CFB-FGD and better understanding the interaction between flue gas and solid particles in the CFB-FGD tower.
Open Research
Data availability statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
References
- 1T. Zhang, Q. Tang, C. Pu, L. Zhang, Adv. Powder Technol. 2022, 33, 103420. DOI: http://doi.org/10.1016/j.apt.2021.103420
- 2J. Hrdlička, T. Dlouhý, J. Energy Inst. 2019, 92 (5), 1399–1405. DOI: https://doi.org/10.1016/j.joei.2018.09.002
- 3X. Ding, Q. Li, D. Wu, Y. Liang, X. Xu, G. Xie, Y. Wei, H. Sun, C. Zhu, H. Fu, J. Chen, Environ. Sci. Technol. 2019, 53 (17), 10361–10370. DOI: https://doi.org/10.1021/acs.est.9b03081
- 4X. Wang, Y. Li, T. Zhu, P. Jing, J. Wang, Chem. Eng. J. 2015, 264, 479–486. DOI: https://doi.org/10.1016/j.cej.2014.11.038
- 5L. Cai, Z. Xu, X. Wang, H. Bai, L. Han, Y. Zhou, Powder Technol. 2022, 401, 117268. DOI: http://doi.org/10.1016/j.powtec.2022.117268
- 6D. B. Gingerich, M. S. Mauter, Environ. Sci. Technol. 2020, 54 (7), 3783–3792. DOI: https://doi.org/10.1021/acs.est.9b07433
- 7P. Ollero, F. Gutiérrez Ortiz, A. Cabanillas, J. Otero, Ind. Eng. Chem. Res. 2001, 40 (23), 5640–5648. DOI: https://doi.org/10.1021/ie010152i
- 8F. Wu, K. Yue, W. Gao, M. Gong, X. Ma, W. Zhou, Adv. Powder Technol. 2020, 31 (1), 323–331. DOI: https://doi.org/10.1016/j.apt.2019.10.024
- 9X. Wu, F. Jiang, X. Xu, Y. Xiao, Particuology 2010, 8 (4), 343–350. DOI: https://doi.org/10.1016/j.partic.2010.01.007
- 10X. Zhang, N. Wang, in Effect of Humidification Water on Semi-Dry Flue Gas Desulfurization, Elsevier, Bangkok, Thailand 2011. DOI: https://doi.org/10.1016/j.proenv.2011.12.156
- 11L. Marocco, F. Inzoli, Int. J. Multiphase Flow 2009, 35 (2), 185–194. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.005
- 12B. Van Wachem, A.-E. Almstedt, Chem. Eng. J. 2003, 96 (1–3), 81–98. DOI: https://doi.org/10.1016/j.psep.2012.08.004
- 13P. Liu, S. Yang, J. Hu, H. Wang, Sep. Purif. Technol. 2023, 323, 124475. DOI: https://doi.org/10.1016/j.seppur.2023.124475
- 14Z. Chen, H. Wang, J. Zhuo, C. You, Fuel Process. Technol. 2017, 162, 1–12. DOI: https://doi.org/10.1016/j.fuproc.2017.03.024
- 15L. Li, B. Zhang, P. Zhu, L. Yu, G. Zhao, M. Li, H. Wang, Energies 2022, 15 (20), 7771. DOI: https://doi.org/10.3390/en15207771
- 16Y. Xiao, C. Li, S. Li, G. Zeng, Q. Wen, G. Guo, J. Song, Chem. Eng. Res. Des. 2014, 92 (7), 1257–1266. DOI: https://doi.org/10.1016/j.cherd.2013.10.026
- 17D. Yang, W. Zhong, X. Chen, J. Zhan, G. Wang, Can. J. Chem. Eng. 2019, 97 (11), 2899–2909. DOI: https://doi.org/10.1002/cjce.23498
- 18X. Wu, P-L. Liang, M. Yu, W. Liu, Proc CSEE 2020, 40, 3229–3240.
- 19Q. Tang, Q. Wang, P. Cui, W. Cao, S. Hou, Process Saf. Environ. Prot. 2013, 91 (5), 386–390. DOI: https://doi.org/10.1016/j.psep.2012.08.004
- 20L. Liu, P. Lu, Environ. Sci. Technol. 2013, 36 (09), 154–158.
- 21J. Zhang, C. You, C. Chen, H. Qi, X. Xu, Environ. Sci. Technol. 2007, 41 (12), 4415–4421. DOI: https://doi.org/10.1021/es062001i
- 22M. Hong, G. Xu, P. Lu, F. Chen, G. Sheng, Q. Zhang, Adv. Powder Technol. 2023, 34 (5), 104008. DOI: https://doi.org/10.1016/j.apt.2023.104008
- 23L. Hua, J. Wang, Chem. Eng. Sci. 2018, 186, 168–190. DOI: https://doi.org/10.1016/j.ces.2018.04.027
- 24Y. Ma, M. Liu, X. Zhou, A. Javed, Chem. Eng. Sci. 2019, 208, 115139. DOI: https://doi.org/10.1016/j.ces.2019.07.057
- 25S. Li, Y. Shen, Adv. Powder Technol. 2020, 31 (7), 2778–2791. DOI: https://doi.org/10.1016/j.apt.2020.05.010
- 26P. Liu, X. Wu, H. Li, Y. Bo, N. Wei, Can. J. Chem. Eng. 2023, 101 (11), 6352–6371. DOI: https://doi.org/10.1002/cjce.24888
- 27S. Wang, H. Lu, F. Zhao, G. Liu, Chem. Eng. J. 2014, 236, 121–130. DOI: https://doi.org/10.1016/j.cej.2013.09.033
- 28H. Yoo, H. Moon, S. Choi, Y.-K. Park, H. H. Cho, J. Taiwan Inst. Chem. Eng. 2017, 71, 235–243. DOI: https://doi.org/10.1016/j.jtice.2016.12.018
- 29C. Geng, W. Zhong, Y. Shao, D. Chen, B. Jin, Powder Technol. 2015, 276, 144–155. DOI: https://doi.org/10.1016/j.powtec.2015.01.077
- 30J. Gu, Y. Shao, X. Liu, W. Zhong, A. Yu, Chem. Eng. Sci. 2018, 192, 619–633. DOI: https://doi.org/10.1016/j.ces.2018.08.008
- 31J. Chen, W. Zhong, G. Zhou, J. Li, S. Ding, Chin. J. Chem. Eng. 2024, 73, 163–175. DOI: https://doi.org/10.1016/j.cjche.2024.05.017
- 32S. Zhang, W. Fan, X. Du, M. Pan, H. Yu, F. Gao, F. Wu, Y. Hong, Y. Wang, M. Zhou, L. Duan, Appl. Therm. Eng. 2025, 272, 126339. DOI: https://doi.org/10.1016/j.applthermaleng.2025.126339
- 33C. Wang, D. Li, Powder Technol. 2008, 184 (3), 267–274. DOI: https://doi.org/10.1016/j.powtec.2007.08.019
- 34X. Hao, C. Ma, Y. Dong, J. Yang, Powder Technol. 2012, 215, 46–53. DOI: https://doi.org/10.1016/j.ces.2018.08.008
- 35M. Hong, G. Xu, P. Lu, Z. Huang, H. Miao, Y. Zhang, C. Ma, Q. Zhang, Chem. Eng. Res. Des. 2023, 196, 184–203. DOI: https://doi.org/10.1016/j.cherd.2023.06.033
- 36S. Feng, L. Xiao, Z. Ge, L. Yang, X. Du, H. Wu, Int. J. Heat Mass Transfer 2019, 129, 936–952. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.023
- 37A. Alkhedhair, H. Gurgenci, I. Jahn, Z. Guan, S. He, Appl. Therm. Eng. 2013, 61 (2), 416–424. DOI: https://doi.org/10.1016/j.applthermaleng.2013.08.012
- 38X. Wu, X. Wang, Y. Zhou, Particuology 2018, 36, 96–105. DOI: https://doi.org/10.1016/j.partic.2017.04.007
- 39A. B. Liu, D. Mather, R. D. Reitz, SAE Trans. 1993, 102, 83–95. DOI: https://www.jstor.org/stable/44611358
- 40P. Liu, X. Wu, H. Li, Y. Bo, N. Wei, Can. J. Chem. Eng. 2023. DOI: https://doi.org/10.1002/cjce.24888
- 41P. Rosin, J. Inst. Fuel 1933, 7 (31), 29–36.
- 42C. E. Brown, in: Applied Multivariate Statistics in Geohydrology and Related Sciences, Springer, Berlin 1998, 155–157. DOI: https://doi.org/10.1007/978-3-642-80328-4_13
10.1007/978-3-642-80328-4_13 Google Scholar
- 43F. Wu, X. Zhang, W. Zhou, X. Ma, Powder Technol. 2018, 336, 112–121. DOI: https://doi.org/10.1016/j.partic.2010.01.007
- 44L. Liu, in Numerical Simulation of Gas-Solid Flow Characteristics in Circulating Fluidized Bed FGD System, Nanjing Normal University, Nanjing2013.
- 45X. Wu, P. Liang, M. Yu, W. Liu, Boiler Technology 2016, 47 (2), 46–52.
- 46F. Yu, J. Chen, F. Sun, S. Zeng, C. Wang, Energy Policy 2011, 39 (3), 1586–1599. DOI: https://doi.org/10.1016/j.enpol.2010.12.034
- 47Y. Zhong, X. Gao, W. Huo, Z.-Y. Luo, M.-J. Ni, K.-F. Cen, Fuel Process. Technol. 2008, 89 (11), 1025–1032. DOI: https://doi.org/10.1016/j.fuproc.2008.04.004
- 48C. Chen, F. Li, H. Qi, Chem. Eng. Sci. 2012, 69 (1), 659–668. DOI: https://doi.org/10.1016/j.ces.2011.11.035
- 49P. Liu, X. Wu, Z. Wang, Y. Bo, H. Bao, Chem Eng Process-Process Intensif 2022, 176, 108974. DOI: https://doi.org/10.1016/j.cep.2022.108974
- 50L. Liu, P. Lu, Environ. Sci. Technol. 2013, 36, 154–158.
- 51S. Wang, P. Zhu, G. Zhang, Q. Zhang, Z. Wang, L. Zhao, J. Energy Inst. 2015, 88 (3), 284–291. DOI: https://doi.org/10.1016/j.cej.2013.09.033
- 52X. Li, M. Dong, S. Li, Z. Feng, Z. Zhang, W. Li, Y. Ren, J. Lu, Chem Eng Process-Process Intensif 2020, 155, 108069. DOI: http://doi.org/10.1016/j.cep.2020.108069
- 53D. Mei, J. Shi, Y. Zhu, X. Xu, F. Xing, L. Shi, Pol. J. Chem. Technol. 2020, 22 (1), 35–45. DOI: https://doi.org/10.2478/pjct-2020-0006