Co-Pyrolysis of Calophyllum inophyllum Seeds and Polypropylene: Thermokinetics and Batch Studies
Subhashree Padhy
Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211 India
Search for more papers by this authorPabitra Mohan Mahapatra
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, 768018 India
Search for more papers by this authorCorresponding Author
Achyut Kumar Panda
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, 768018 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorBuggana Kavya Sri
MS Swaminathan School of Agricultural Sciences, Centurion University of Technology and Management, Parlakhemundi, Odisha, 761211 India
Search for more papers by this authorCorresponding Author
Narayan Gouda
Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSubhashree Padhy
Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211 India
Search for more papers by this authorPabitra Mohan Mahapatra
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, 768018 India
Search for more papers by this authorCorresponding Author
Achyut Kumar Panda
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, 768018 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorBuggana Kavya Sri
MS Swaminathan School of Agricultural Sciences, Centurion University of Technology and Management, Parlakhemundi, Odisha, 761211 India
Search for more papers by this authorCorresponding Author
Narayan Gouda
Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
This study investigates the thermo-kinetic behavior and product characterization of Tamanu seed (TS) and waste polypropylene (PP) through thermogravimetric analysis (30–900 °C at 5, 10, and 20 °C/min), batch pyrolysis (400–550 °C), and pyrolytic oil analysis (Fourier transform infrared [FTIR] and gas chromatography–mass spectrometry [GC–MS]). Co-pyrolysis of TS and PP lowered the thermal degradation temperature of PP. The thermal degradation of TS exhibited the activation energy of 165 kJ mol−1, following an F2 mechanism, whereas PP showed the activation energy of 293 kJ mol−1 with an F1 mechanism. The TS–PP blend exhibited the activation energy of 280 kJ mol−1 and followed a D1 mechanism. The blend reduced the Gibbs free energy to 765.29 kJ mol−1, compared to 766.87 kJ mol−1 for TS and 830.46 kJ mol−1 for PP alone. Co-pyrolysis improved the yield and fuel properties of the pyrolytic oil, demonstrating a sustainable and effective strategy for converting biomass and plastic waste into valuable biofuels, contributing to waste management and energy recovery.
Open Research
Data Availability Statement
The corresponding author may be requested for the data availability.
Supporting Information
Filename | Description |
---|---|
ceat70055-sup-0001-SuppMat.docx47.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Abnisa, W. M. A. Wan Daud, Energy Convers. Manage. 2014, 87, 71–85. DOI: https://doi.org/10.1016/j.enconman.2014.07.007
- 2P. Li, X. Shi, X. Wang, J. Song, S. Fang, J. Bai, G. Zhang, C. Chang, S. Pang, J. Cleaner Prod. 2021, 328, 129613. DOI: https://doi.org/10.1016/j.jclepro.2021.129613
- 3F. Wu, H. Ben, Y. Yang, H. Jia, R. Wang, G. Han. Polymers 2020, 12 (4), 973. DOI: https://doi.org/10.3390/polym12040973
- 4S. Melendi-Espina, R. Alvarez, M. A. Diez, M. D. Casal, Fuel Process. Technol. 2015, 137, 351–358. DOI: https://doi.org/10.1016/j.fuproc.2015.03.024
- 5A. O. Oyedun, C. Z. Tee, S. Hanson, C. W. Hui, Fuel Processing Technology 2014, 128, 471–481. DOI: https://doi.org/10.1016/j.fuproc.2014.08.010
- 6A. Arumugam, V. Ponnusami, Renew. Energy 2019, 131, 459–471. DOI: https://doi.org/10.1016/j.renene.2018.07.059
- 7M. H. Mosarof, M. A. Kalam, H. H. Masjuki, A. Alabdulkarem, A. M. Ashraful, A. Arslan, H. K. Rashedul, I. M. Monirul, Energy Convers. Manage. 2016, 118, 119–134. DOI: https://doi.org/10.1016/j.enconman.2016.03.081
- 8M. Jain, U. Chandrakant, V. Orsat, V. Raghavan, Ind. Crops Prod. 2018, 114, 28–44. DOI: https://doi.org/10.1016/j.indcrop.2018.01.051
- 9M. Khalvati, I. Dincer, in Causes, Impacts and Solutions to Global Warming (Eds: I. Dincer, C. O. Colpan, F. Kadioglu), Springer New York, New York, NY 2013, 233–250. DOI: https://doi.org/10.1007/978-1-4614-7588-0_15
10.1007/978-1-4614-7588-0_15 Google Scholar
- 10J. Shenoy, Times of India 2018. https://timesofindia.indiatimes.com/business/india-business/indias-medical-waste-growing-at-7-annually-assocham/articleshow/63415511.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst (accessed on March 22, 2018)
- 11A. Sen, Waste Management Market in India-A $13.62 Billion Opportunity By 2025, Reveals New Market Research Report by NOVONOUS 2014, (accessed on September 29, 2014).
- 12S. M. Gouws, M. Carrier, J. R. Bunt, H. W. J. P. Neomagus, Renew. Sustain. Energy Rev. 2021, 135, 110189. DOI: https://doi.org/10.1016/j.rser.2020.110189
- 13M. Meng, W. Meng, S. Cheng, B. Xing, G. Yi, C. Zhang, Biomass Convers. Biorefin. 2024, 14 (21), 26753–26763. DOI: https://doi.org/10.1007/s13399-022-03317-z
- 14C. Rizan, F. Mortimer, R. Stancliffe, M. F. Bhutta, J. R. Soc. Med. 2020, 113 (2), 49–53. DOI: https://doi.org/10.1177/0141076819890554
- 15G. G. N. Thushari, J. D. M. Senevirathna, Heliyon 2020, 6 (8), e04709. DOI: https://doi.org/10.1016/j.heliyon.2020.e04709
- 16I. S. Ramakoti, A. K. Panda, S. Jal, N. Gouda, J. Polym. Eng. 2024, 44 (10), 728–739. DOI: https://doi.org/10.1515/polyeng-2024-0070
- 17A. Sanyal, A. K. Choudhary, J. Renew. Sustain. Energy 2024, 16 (5), 052703. DOI: https://doi.org/10.1063/5.0230798
- 18M. M. Harussani, S. M. Sapuan, U. Rashid, A. Khalina, R. A. Ilyas, Sci. Total Environ. 2022, 803, 149911. DOI: https://doi.org/10.1016/j.scitotenv.2021.149911
- 19P. M. Mahapatra, N. Gouda, S. Pradhan, A. K. Panda, Sustain. Chem. Clim. Action 2025, 6, 100060. DOI: https://doi.org/10.1016/j.scca.2025.100060
- 20T. Suchocki, P. Kazimierski, K. Januszewicz, P. Lampart, D. Zaniewski, P. Klimaszewski, Ł. Witanowski, Arch. Thermodyn. 2024, 44, 157–183. DOI: https://doi.org/10.24425/ather.2023.149711
10.24425/ather.2023.149711 Google Scholar
- 21S. Hongthong, W. Sangsida, S. Wongcharee, A. Chanthakhot, P. Aungthitipan, K. Suwannahong, T. Kreetachat, J. Rioyo, Int. J. Chem. Eng. 2024, 2024 (1), 1176275. DOI: https://doi.org/10.1155/2024/1176275
- 22A. H. Zulkafli, H. Hassan, M. A. Ahmad, A. T. Mohd Din, S. M. Wasli, Arabian J. Chem. 2023, 16 (1), 104389. DOI: https://doi.org/10.1016/j.arabjc.2022.104389
- 23M. H. M. Ahmed, N. Batalha, H. M. D. Mahmudul, G. Perkins, M. Konarova, Bioresour. Technol. 2020, 310, 123457. DOI: https://doi.org/10.1016/j.biortech.2020.123457
- 24C. Dorado, C. A. Mullen, A. A. Boateng, ACS Sustainable Chem. Eng. 2014, 2 (2), 301–311. DOI: https://doi.org/10.1021/sc400354g
- 25G. Özsin, A. E. Pütün, Energy Convers. Manage. 2017, 149, 675–685. DOI: https://doi.org/10.1016/j.enconman.2017.07.059
- 26B. Han, Y. Chen, Y. Wu, D. Hua, Z. Chen, W. Feng, M. Yang, Q. Xie, J. Therm. Anal. Calorim. 2014, 115 (1), 227–235. DOI: https://doi.org/10.1007/s10973-013-3228-7
- 27R. K. Mishra, A. Sahoo, K. Mohanty, Bioresour. Technol. 2019, 289, 121608. DOI: https://doi.org/10.1016/j.biortech.2019.121608
- 28S. Mariyam, P. Parthasarathy, S. Pradhan, T. Al-Ansari, G. McKay, Int. J. Sustain. Energy 2024, 43 (1), 2168003. DOI: https://doi.org/10.1080/14786451.2023.2168003
- 29J. Chattopadhyay, C. Kim, R. Kim, D. Pak, Korean J. Chem. Eng. 2008, 25 (5), 1047–1053. DOI: https://doi.org/10.1007/s11814-008-0171-6
- 30B. L. F. Chin, S. Yusup, A. Al Shoaibi, P. Kannan, C. Srinivasakannan, S. A. Sulaiman, Energy Convers. Manage. 2014, 87, 746–753. DOI: https://doi.org/10.1016/j.enconman.2014.07.043
- 31G. F. M. Cupertino, Á. M. Da Silva, A. K. S. Pereira, F. M. Delatorre, J. G. M. Ucella-Filho, E. C. De Souza, D. Profeti, L. P. R. Profeti, M. P. Oliveira, D. Saloni, R. Luque, A. F. Dias Júnior, Fuel 2024, 362, 130761. DOI: https://doi.org/10.1016/j.fuel.2023.130761[CrossRef]
- 32H. Yuan, H. Fan, R. Shan, M. He, J. Gu, Y. Chen, Energy Convers. Manage. 2018, 157, 517–526. DOI: https://doi.org/10.1016/j.enconman.2017.12.038
- 33E. Chaturvedi, P. Roy, R. Upadhyay, P. Chowdhury, J. Anal. Appl. Pyrolysis 2024, 178, 106379. DOI: https://doi.org/10.1016/j.jaap.2024.106379
- 34D. V. Suriapparao, R. Vinu, Renew. Energy 2021, 170, 400–409. DOI: https://doi.org/10.1016/j.renene.2021.02.010
- 35A. Inayat, L. Rocha-Meneses, C. Ghenai, M. Abdallah, A. Shanableh, K. Al-Ali, A. Alghfeli, R. Alsuwaidi, Case Stud. Therm. Eng. 2022, 31, 101841. DOI: https://doi.org/10.1016/j.csite.2022.101841
- 36O. Sanahuja-Parejo, A. Veses, M. V. Navarro, J. M. López, R. Murillo, M. S. Callén, T. García, Chem. Eng. J. 2019, 377, 120246. DOI: https://doi.org/10.1016/j.cej.2018.10.183
- 37A. T. Ali, K. P. Shadangi, D. K. Ram, J. Taiwan Inst. Chem. Eng. 2024, 162, 105603. DOI: https://doi.org/10.1016/j.jtice.2024.105603
- 38H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, R. S. Norhasyima, Renew. Sustain. Energy Rev. 2011, 15 (8), 3501–3515. DOI: https://doi.org/10.1016/j.rser.2011.05.005
- 39H. C. Mai, T. T. T. Le, T. Y. N. J. A. Bui, Int. J. Eng. Res. Appl. 2020, 10, 31–39. DOI: https://doi.org/10.9790/9622-1006033139
10.9790/9622?1006033139 Google Scholar
- 40M. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, A. G. McDonald, J. Anal. Appl. Pyrolysis 2014, 109, 272–277. DOI: https://doi.org/10.1016/j.jaap.2014.05.023
- 41P. Palmay, C. Haro, I. Huacho, D. Barzallo, J. C. Bruno, Molecules 2022, 27 (10), 3287. DOI: https://doi.org/10.3390/molecules27103287
- 42S. Papuga, J. Savković, M. Djurdjevic, S. V. Ciprioti, Polymers 2024, 16 (10), 1302. DOI: https://doi.org/10.3390/polym16101302
- 43N. Gouda, R. K. Singh, S. N. Meher, A. K. Panda, J. Energy Inst. 2017, 90 (2), 265–275. DOI: https://doi.org/10.1016/j.joei.2016.01.003
- 44J. Yang, J. Rizkiana, W. B. Widayatno, S. Karnjanakom, M. Kaewpanha, X. Hao, A. Abudula, G. Guan, Energy Convers. Manage. 2016, 120, 422–429. DOI: https://doi.org/10.1016/j.enconman.2016.05.008
- 45V. Piazza, R. B. da Silva Junior, A. Frassoldati, L. Lietti, S. Chiaberge, C. Gambaro, A. Siviero, T. Faravelli, A. Beretta, J. Anal. Appl. Pyrolysis 2024, 178, 106413. DOI: https://doi.org/10.1016/j.jaap.2024.106413
- 46P. M. Mahapatra, P. C. Mishra, S. Kumar, P. Mishra, A. K. Panda, Results Eng. 2024, 21, 101720. DOI: https://doi.org/10.1016/j.rineng.2023.101720
- 47S. A. El-Sayed, M. Khairy, Biofuels 2015, 6 (3–4), 157–170. DOI: https://doi.org/10.1080/17597269.2015.1065590
- 48C. Park, J. Lee, Int. J. Energy Res. 2021, 45 (9), 13088–13097. DOI: https://doi.org/10.1002/er.6635
- 49C. L. Waters, R. R. Janupala, R. G. Mallinson, L. L. Lobban, J. Anal. Appl. Pyrolysis 2017, 126, 380–389. DOI: https://doi.org/10.1016/j.jaap.2017.05.008
- 50W.-H. Chen, Y.-S. Chu, J.-L. Liu, J.-S. Chang, Energy Convers. Manage. 2018, 160, 209–219. DOI: https://doi.org/10.1016/j.enconman.2018.01.036
- 51K. Kebelmann, A. Hornung, U. Karsten, G. Griffiths, Biomass Bioenergy 2013, 49, 38–48. DOI: https://doi.org/10.1016/j.biombioe.2012.12.006
- 52M. Cassien, A. Mercier, S. Thétiot-Laurent, M. Culcasi, E. Ricquebourg, A. Asteian, G. Herbette, J.-P. Bianchini, P. Raharivelomanana, S. Pietri, Antioxidants 2021, 10 (2), 199. DOI: https://doi.org/10.3390/antiox10020199
- 53W.-H. Chen, Z.-Y. Wu, J.-S. Chang, Bioresour. Technol. 2014, 155, 245–251. DOI: https://doi.org/10.1016/j.biortech.2013.12.116
- 54A. A. Shagali, S. Hu, H. Li, H. Chi, H. Qing, J. Xu, L. Jiang, Y. Wang, S. Su, J. Xiang, Fuel 2023, 331, 125724. DOI: https://doi.org/10.1016/j.fuel.2022.125724
- 55P. M. Mahapatra, S. Aech, S. R. Dash, U. P. Tripathy, P. C. Mishra, A. K. Panda, J. Energy Inst. 2023, 110, 101336. DOI: https://doi.org/10.1016/j.joei.2023.101336
- 56L. Zhou, Y. Wang, Q. Huang, J. Cai, Fuel Process. Technol. 2006, 87 (11), 963–969. DOI: https://doi.org/10.1016/j.fuproc.2006.07.002
- 57J. Guo, A. C. Lua, Biomass Bioenergy 2001, 20 (3), 223–233. DOI: https://doi.org/10.1016/S0961-9534(00)00080-5
- 58F. Abnisa, W. M. A. W. Daud, J. N. Sahu, Environ. Prog. Sustain. Energy 2014, 33 (3), 1026–1033. DOI: https://doi.org/10.1002/ep.11850
- 59F. Abnisa, W. M. A. Wan Daud, S. Ramalingam, M. N. B. M. Azemi, J. N. Sahu, Fuel 2013, 108, 311–318. DOI: https://doi.org/10.1016/j.fuel.2013.02.013
- 60K. P. Shadangi, K. Mohanty, Fuel 2015, 153, 492–498. DOI: https://doi.org/10.1016/j.fuel.2015.03.017
- 61M. Brebu, S. Ucar, C. Vasile, J. Yanik, Fuel 2010, 89 (8), 1911–1918. DOI: https://doi.org/10.1016/j.fuel.2010.01.029
- 62J. Yang, J. Rizkiana, W. B. Widayatno, S. Karnjanakom, M. Kaewpanha, X. Hao, A. Abudula, G. Guan, Energy Convers. Manage. 2016, 120, 422–429. DOI: https://doi.org/10.1016/j.enconman.2016.05.008
- 63Z. Wang, K. G. Burra, T. Lei, A. K. Gupta, Prog. Energy Combust. Sci. 2021, 84, 100899. DOI: https://doi.org/10.1016/j.pecs.2020.100899
- 64M. S. Hossain, D. A. N. M. M. Rahman, Int. J. Sci. Eng. Res. 2015, 6 (11), 1224–1229.
- 65B. Purevsuren, Y. Davaajav, F. Karaca, T. J. Morgan, A. George, A. A. Herod, R. Kandiyoti, Eur. J. Mass Spectrom. 2009, 15 (1), 23–33. DOI: https://doi.org/10.1255/ejms.975