Ag–Fe3O4 Nanofluids via Ultrasound-Assisted Minireactor for Enhanced Heat Transfer in Pinched Pipe
Divya P. Barai
Department of Chemical Engineering, Laxminarayan Innovation Technological University, Amravati Road, Opposite Bharat Nagar, Nagpur, Maharashtra, 440033 India
Search for more papers by this authorCorresponding Author
Bharat A. Bhanvase
Department of Chemical Engineering, Laxminarayan Innovation Technological University, Amravati Road, Opposite Bharat Nagar, Nagpur, Maharashtra, 440033 India
E-mail: [email protected]
Search for more papers by this authorDivya P. Barai
Department of Chemical Engineering, Laxminarayan Innovation Technological University, Amravati Road, Opposite Bharat Nagar, Nagpur, Maharashtra, 440033 India
Search for more papers by this authorCorresponding Author
Bharat A. Bhanvase
Department of Chemical Engineering, Laxminarayan Innovation Technological University, Amravati Road, Opposite Bharat Nagar, Nagpur, Maharashtra, 440033 India
E-mail: [email protected]
Search for more papers by this authorAbstract
This study investigates Ag-doped Fe3O4 nanofluids for enhanced convective heat transfer. Nanoparticles were synthesized using ultrasound-assisted and minireactor-based methods, characterized through analytical techniques, and dispersed in water to evaluate their stability and thermal conductivity. A lab-scale setup was used to analyze convective heat transfer, pressure drop, and friction factor in a pinched tube, an advanced heat transfer system. Results demonstrate a significant Nusselt number increase from 22.886 to 62.365 at a Reynolds number of 6160 ± 75 when 0.02 vol.% of minireactor-synthesized Ag-doped Fe3O4 nanoparticles were added to water. These findings highlight the potential of these nanofluids for improving thermal performance in practical applications.
Open Research
Data Availability Statement
The data are present in the manuscript.
References
- 1S. P. Tembhare, D. P. Barai, B. A. Bhanvase, Renew Sustainable Energy Rev. 2022, 153, 111738. DOI: https://doi.org/10.1016/j.rser.2021.111738
- 2J. Patel, A. Soni, D. P. Barai, B. A. Bhanvase, Appl. Therm. Eng. 2023, 219, 119428. DOI: https://doi.org/10.1016/j.applthermaleng.2022.119428
- 3L. Chen, H. Xie, Colloids Surf A Physicochem Eng Asp 2009, 352 (1–3), 136–140. DOI: https://doi.org/10.1016/j.colsurfa.2009.10.015
- 4D. P. Barai, B. A. Bhanvase, S. H. Sonawane, Ind. Eng. Chem. Res. 2020, 59 (22), 10231–10277. DOI: https://doi.org/10.1021/acs.iecr.0c00865
- 5D. P. Barai, B. A. Bhanvase, in Towards Nanofluids for Large-Scale Industrial Applications (Eds: B. A. Bhanvase, D. P. Barai, G. Żyła, Z. Said), Elsevier, Amsterdam 2024.
- 6B. A. Bhanvase, V. B. Kadam, T. D. Rode, P. R. Jadhao, Int. J. Nanosci. 2015, 14 (4), 550014. DOI: https://doi.org/10.1142/S0219581×15500143
10.1142/S0219581X15500143 Google Scholar
- 7B. A. Bhanvase, M. A. Patel, S. H. Sonawane, A. B. Pandit, Ultrason. Sonochem. 2016, 28, 311–318. DOI: https://doi.org/10.1016/j.ultsonch.2015.08.007
- 8S. R. Shirsath, B. A. Bhanvase, S. H. Sonawane, P. R. Gogate, A. B. Pandit, Ultrason. Sonochem. 2017, 35, 124–133. DOI: https://doi.org/10.1016/j.ultsonch.2016.09.009
- 9S. Shabana, S. H. H. Sonawane, V. Ranganathan, P. H. H. Pujjalwar, D. V. V. Pinjari, B. A. A. Bhanvase, P. R. R. Gogate, M. Ashokkumar, Ultrason. Sonochem. 2017, 36, 59–69. DOI: https://doi.org/10.1016/j.ultsonch.2016.11.020
- 10D. P. Barai, B. A. Bhanvase, V. K. Saharan, Ind. Eng. Chem. Res. 2019, 58 (19), 8349–8369. DOI: https://doi.org/10.1021/acs.iecr.8b05733
- 11P. L. Suryawanshi, S. P. Gumfekar, B. A. Bhanvase, S. H. Sonawane, M. S. Pimplapure, Chem. Eng. Sci. 2018, 189, 431–448. DOI: https://doi.org/10.1016/j.ces.2018.03.026
- 12G. A. Patil, M. L. Bari, B. A. Bhanvase, V. Ganvir, S. Mishra, S. H. Sonawane, Chem. Eng. Process. 2012, 62, 69–77. DOI: https://doi.org/10.1016/j.cep.2012.09.007
- 13S. Appalakutti, S. Sonawane, B. A. Bhanvase, V. Mittal, M. Ashokkumar, Chem. Eng. Process. 2015, 89, 28–34. DOI: https://doi.org/10.1016/j.cep.2014.12.012
- 14A. R. Kale, D. P. Barai, B. A. Bhanvase, S. H. Sonawane, Ind. Eng. Chem. Res. 2021, 60 (41), 14747–14757. DOI: https://doi.org/10.1021/acs.iecr.1c02413
- 15L. S. Sundar, M. K. Singh, A. C. M. Sousa, Int. Commun. Heat Mass Transfer 2013, 49, 17–24. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026
- 16W. Yu, H. Xie, L. Chen, Y. Li, Colloids Surf A Physicochem Eng Asp 2010, 355 (1–3), 109–113. DOI: https://doi.org/10.1016/j.colsurfa.2009.11.044
- 17P. Sharma, I. H. Baek, T. Cho, S. Park, K. B. Lee, Powder Technol. 2011, 208 (1), 7–19. DOI: https://doi.org/10.1016/j.powtec.2010.11.016
- 18L. Zhang, Y.-H. Dou, H.-C. Gu, J. Colloid Interface Sci. 2006, 297 (2), 660–664. DOI: https://doi.org/10.1016/j.jcis.2005.11.009
- 19B. Zheng, M. Zhang, D. Xiao, Y. Jin, M. M. F. Choi, Inorg. Mater. 2010, 46 (10), 1106–1111. DOI: https://doi.org/10.1134/S0020168510100146
- 20A. Amarjargal, L. D. Tijing, I. T. Im, C. S. Kim, Chem. Eng. J. 2013, 226, 243–254. DOI: https://doi.org/10.1016/j.cej.2013.04.054
- 21J. Ma, K. Wang, M. Zhan, ACS Appl. Mater. Interfaces 2015, 7 (29), 16027–16039. DOI: https://doi.org/10.1021/acsami.5b04342
- 22C. V. Khedkar, N. D. Khupse, B. R. Thombare, P. R. Dusane, G. Lole, R. S. Devan, A. S. Deshpande, S. I. Patil, Chem. Phys. Lett. 2020, 742, 37131. DOI: https://doi.org/10.1016/j.cplett.2020.137131
- 23A. Siricharoenpanich, S. Wiriyasart, A. Srichat, P. Naphon, Case Stud Therm Eng 2020, 20, 100641. DOI: https://doi.org/10.1016/j.csite.2020.100641
- 24R. N. Radkar, B. A. Bhanvase, D. P. Barai, S. H. Sonawane, Mater Sci Energy Technol 2019, 2 (2), 161–170. DOI: https://doi.org/10.1016/j.mset.2019.01.007
10.1016/j.mset.2019.01.007 Google Scholar
- 25H. Wang, M. Pang, Y. Diao, Y. Zhao, Powder Technol. 2022, 402, 117321. DOI: https://doi.org/10.1016/j.powtec.2022.117321
- 26R. Vidhya, T. Balakrishnan, B. S. Kumar, J Eng Appl Sci 2021, 68 (1), 32. DOI: https://doi.org/10.1186/s44147-021-00034-8
- 27Z. Said, E. Bellos, H. Muhammad Ali, S. Rahman, C. Tzivanidis, Appl. Therm. Eng. 2025, 258, 124478. DOI: https://doi.org/10.1016/j.applthermaleng.2024.124478
- 28J. Chen, H. Müller-Steinhagen, G. G. Duffy, Appl. Therm. Eng. 2001, 21 (5), 535–547. DOI: https://doi.org/10.1016/S1359-4311(00)00067-3
- 29S. Pethkool, S. Eiamsa-ard, S. Kwankaomeng, P. Promvonge, Int. Commun. Heat Mass Transfer 2011, 38 (3), 340–347. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.11.014
- 30M. E. Nakhchi, M. Hatami, M. Rahmati, Appl. Therm. Eng. 2020, 180, 15863. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115863
- 31M. Gürdal, H. K. Pazarlıoğlu, M. Tekir, K. Arslan, E. Gedik, Appl. Therm. Eng. 2022, 200, 17655. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117655
- 32A. A. Kulkarni, V. V. Ranade, Flow Reactor With Pinched Pipe Sections for Mixing and Heat Transfer, WO2014167506A1, Google Patents, Mountain View 2014.
- 33N. S. Hasabnis, K. A. Totlani, V. V. Ranade, Can. J. Chem. Eng. 2015, 93 (10), 1860–1868. DOI: https://doi.org/10.1002/cjce.22275
- 34M. K. Sharma, S. B. Potdar, A. A. Kulkarni, AlChE J. 2017, 63 (1), 358–365. DOI: https://doi.org/10.1002/aic.15498
- 35A. Hussain, M. Sharma, S. Patil, R. B. Acharya, M. Kute, A. Waghchaure, A. A. Kulkarni, J Flow Chem 2021, 11 (3), 611–624. DOI: https://doi.org/10.1007/s41981-021-00182-1
- 36D. P. Barai, B. A. Bhanvase, Appl. Nanosci. 2022, 12, 2889–2899. DOI: https://doi.org/10.1007/s13204-022-02588-2
- 37M. Tafakhori, D. Kalantari, P. Biparva, S. M. Peyghambarzadeh, J. Therm. Anal. Calorim. 2021, 146 (2), 841–853. DOI: https://doi.org/10.1007/s10973-020-10034-0
- 38M. Farhan, F. Hassan, M. Zubair, F. Jamil, I. Shahid, M. Khiadani, H. M. Ali, J. Therm. Anal. Calorim. 2025. DOI: https://doi.org/10.1007/s10973-025-14001-5
- 39S. V. Sridhar, R. Karuppasamy, G. D. Sivakumar, J Therm Sci Eng Appl 2020, 12 (4), 041016. DOI: https://doi.org/10.1115/1.4045699
- 40R. Dhairiyasamy, B. Saleh, M. Govindasamy, A. A. Aly, A. Afzal, Y. Abdelrhman, Inorg Nano-Metal Chem 2023, 53 (1), 78–92. DOI: https://doi.org/10.1080/24701556.2021.1980041
- 41A. H. Alami, A. A. Hawili, K. Aokal, M. Faraj, M. Tawalbeh, Case Stud Therm Eng 2020, 20, 100640. DOI: https://doi.org/10.1016/j.csite.2020.100640
- 42M. Pius, F. Francis, S. A. Joseph, J. Mater. Sci. Mater. Electron. 2024, 35 (24), 1658. DOI: https://doi.org/10.1007/s10854-024-13410-w
- 43Z. A. Alrowaili, M. Ezzeldien, N. M. Shaaalan, E. Hussein, M. A. Sharafeldin, J. Energy Storage 2022, 50, 104675. DOI: https://doi.org/10.1016/j.est.2022.104675
- 44A. Lee, C. Veerakumar, H. Cho, Appl. Sci. 2021, 11 (10), 4683. DOI: https://doi.org/10.3390/app11104683
- 45A. S. Habeeb, S. Aljabair, A. A. Karamallah, Int J Thermofluids 2022, 16, 100231. DOI: https://doi.org/10.1016/j.ijft.2022.100231
- 46L. Syam Sundar, A. M. Alklaibi, S. Sambasivam, K. V. V. Chandra Mouli, J. Magn. Magn. Mater. 2024, 594, 171889. DOI: https://doi.org/10.1016/j.jmmm.2024.171889
- 47S. Goher, Z. Abbas, M. Y. Rafiq, J. Mol. Liq. 2024, 398, 124259. DOI: https://doi.org/10.1016/j.molliq.2024.124259
- 48M. L. V. Ramires, C. A. Nieto De Castro, Y. Nagasaka, A. Nagashima, M. J. Assael, W. A. Wakeham, J. Phys. Chem. Ref. Data 1995, 24 (3), 1377–1381. DOI: https://doi.org/10.1063/1.555963
- 49R. Prakash, S. K. Majumder, A. Singh, Ind. Eng. Chem. Res. 2019, 58 (8), 3499–3522. DOI: https://doi.org/10.1021/acs.iecr.8b05625
- 50Gaweł Żyła, Int. J. Heat Mass Transf. 2016, 92, 751–756. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.045
- 51M. J. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J. L. Legido, M. M. Piñeiro, J. Chem. Thermodyn. 2014, 73, 23–30. DOI: https://doi.org/10.1016/j.jct.2013.07.002
- 52B. C. Pak, Y. I. Cho, Exp. Heat Transfer 1998, 11 (2), 151–170. DOI: https://doi.org/10.1080/08916159808946559
- 53B. A. Bhanvase, S. D. Sayankar, A. Kapre, P. J. Fule, S. H. Sonawane, Appl. Therm. Eng. 2018, 128, 134–140. DOI: https://doi.org/10.1016/j.applthermaleng.2017.09.009
- 54F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed., Wiley, Hoboken 1996.
- 55W. Li, H. Wu, Chem. Phys. Lett. 2017, 686, 178–182. DOI: https://doi.org/10.1016/j.cplett.2017.08.046
- 56S. Iravani, H. Korbekandi, S. V. Mirmohammadi, B. Zolfaghari, Res Pharm Sci 2014, 9 (6), 385–406.
- 57S. Agnihotri, S. Mukherji, S. Mukherji, RSC Adv. 2014, 4 (8), 3974–3983. DOI: https://doi.org/10.1039/C3RA44507K
- 58S. S. Chawhan, D. P. Barai, B. A. Bhanvase, Therm Sci Eng Prog 2021, 25, 100928. DOI: https://doi.org/10.1016/j.tsep.2021.100928
- 59I. Plazl, A. Pohar, Chem. Biochem. Eng. Q. 2009, 23 (4), 537–544.
- 60X. Z. Lin, A. D. Terepka, H. Yang, Nano Lett. 2004, 4 (11), 2227–2232. DOI: https://doi.org/10.1021/nl0485859
- 61O. U. Rahman, S. C. Mohapatra, S. Ahmad, Mater. Chem. Phys. 2012, 132 (1), 196–202. DOI: https://doi.org/10.1016/j.matchemphys.2011.11.032
- 62S. H. Chaki, T. J. Malek, M. D. Chaudhary, J. P. Tailor, M. P. Deshpande, Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6 (3), 035009. DOI: https://doi.org/10.1088/2043-6262/6/3/035009
10.1088/2043-6262/6/3/035009 Google Scholar
- 63T. Wu, S. Liu, Y. Luo, W. Lu, L. Wang, X. Sun, Nanoscale 2011, 3 (5), 2142. DOI: https://doi.org/10.1039/c1nr10128e
- 64S. F. Shayesteh, M. Saie, Pramana – J Phys 2015, 85 (6), 1245–1255. DOI: https://doi.org/10.1007/s12043-015-0950-7
- 65C. Sun, C. Qin, H. Zhai, B. Zhang, X. Wu, Nanomaterials 2021, 11 (10), 2722. DOI: https://doi.org/10.3390/nano11102722
- 66M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, N. Gu, Colloids Surf A Physicochem Eng Asp 2003, 212 (2–3), 219–226. DOI: https://doi.org/10.1016/S0927-7757(02)00305-9
- 67A. K. Bordbar, A. A. Rastegari, R. Amiri, E. Ranjbakhsh, M. Abbasi, A. R. Khosropour, Biotechnol Res Int 2014, 2014, 1–6. DOI: https://doi.org/10.1155/2014/705068
10.1155/2014/705068 Google Scholar
- 68S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu, J. Zhou, Chem. Eng. J. 2013, 226, 30–38. DOI: https://doi.org/10.1016/j.cej.2013.04.060
- 69S. K. Kale, Indian J. Pure Appl. Phys. 2018, 56 (9), 728–731.
- 70D. Preetha, R. Arun, P. Kumari, C. Aarti, J Nanotechnol 2013, 2013, 1–5.
- 71Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li, X. Li, J. Colloid Interface Sci. 2012, 383 (1), 96–102. DOI: https://doi.org/10.1016/j.jcis.2012.06.027
- 72A. K. Thottoli, A. K. A. Unni, J Nanostructure Chem 2013, 3 (1), 56. DOI: https://doi.org/10.1186/2193-8865-3-56
10.1186/2193-8865-3-56 Google Scholar
- 73X. Zhang, Z.-B. Feng, L. Liu, X.-M. Zhang, Z.-R. Wang, P. Lu, Q. Sun, Ionics (Kiel) 2019, 25 (9), 4099–4107. DOI: https://doi.org/10.1007/s11581-019-03000-w
- 74L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, D. D. Berhanuddin, Magnetochemistry 2020, 6 (4), 68. DOI: https://doi.org/10.3390/magnetochemistry6040068
- 75Z. I. Takai, M. K. Mustafa, S. Asman, K. A. Sekak, Int J Nanoelectron Mater 2019, 12 (1), 37–46.
- 76E. Tanasa, C. Zaharia, I.-C. Radu, V.-A. Surdu, B. S. Vasile, C.-M. Damian, E. Andronescu, Nanomaterials 2019, 9 (10), 1384. DOI: https://doi.org/10.3390/nano9101384
- 77B. Bhanvase, D. Barai, in Nanofluids for Heat and Mass Transfer, Elsevier, Amsterdam 2021.
- 78O. Z. Sharaf, R. A. Taylor, E. Abu-Nada, Phys. Rep. 2020, 867, 1–84. DOI: https://doi.org/10.1016/j.physrep.2020.04.005
- 79J. H. Adair, E. Suvaci, J. Sindel, in Encyclopedia of Materials: Science and Technology (Eds: K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, P. Veyssière), Elsevier, Oxford 2001.
- 80B. A. Snopok, S. N. Nizamov, T. V. Snopok, V. M. Mirsky, Nanoscale Adv 2024, 6 (15), 3865–3877. DOI: https://doi.org/10.1039/D4NA00109E
- 81D. P. Barai, B. A. Bhanvase, S. L. Pandharipande, Neural. Comput. Appl. 2022, 34 (1), 271–282. DOI: https://doi.org/10.1007/s00521-021-06366-z
- 82M. Abareshi, E. K. Goharshadi, S. Mojtaba Zebarjad, H. Khandan Fadafan, A. Youssefi, J. Magn. Magn. Mater. 2010, 322 (24), 3895–3901. DOI: https://doi.org/10.1016/j.jmmm.2010.08.016
- 83M. Afrand, D. Toghraie, N. Sina, Int. Commun. Heat Mass Transfer 2016, 75, 262–269. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.04.023
- 84G. Paul, M. Chopkar, I. Manna, P. K. Das, Renewable Sustainable Energy Rev. 2010, 14 (7), 1913–1924. DOI: https://doi.org/10.1016/j.rser.2010.03.017
- 85Y. Xiong, M. Sun, Y. Wu, P. Xu, Q. Xu, C. Li, Y. Ding, C. Ma, Energy Fuels 2020, 34 (9), 11606–11619. DOI: https://doi.org/10.1021/acs.energyfuels.0c02466
- 86D. P. Barai, B. A. Bhanvase, G. Żyła, Nanomaterials 2022, 12 (12), 1961.
- 87M. Shakeel, D. Sagandykova, A. Mukhtarov, A. Dauyltayeva, L. Maratbekkyzy, P. Pourafshary, D. Musharova, Heliyon 2024, 10 (7), e28915. DOI: https://doi.org/10.1016/j.heliyon.2024.e28915
- 88T. P. Teng, Y. H. Hung, T. C. Teng, H. E. Mo, H. G. Hsu, Appl. Therm. Eng. 2010, 30 (14–15), 2213–2218. DOI: https://doi.org/10.1016/j.applthermaleng.2010.05.036
- 89P. K. Das, J. Mol. Liq. 2017, 240, 420–446. DOI: https://doi.org/10.1016/j.molliq.2017.05.071
- 90Y. Kobayashi, N. Arai, J. Electrochem. Soc. 2019, 166 (9), B3223–B3227. DOI: https://doi.org/10.1149/2.0341909jes
- 91K. S. Suganthi, M. Parthasarathy, K. S. Rajan, Chem. Phys. Lett. 2013, 561–562, 120–124. DOI: https://doi.org/10.1016/j.cplett.2013.01.044
- 92K. S. Suganthi, V. Leela Vinodhan, K. S. Rajan, Appl. Energy 2014, 135, 548–559. DOI: https://doi.org/10.1016/j.apenergy.2014.09.023
- 93M. M. Mehrali, E. Sadeghinezhad, M. A. Rosen, A. R. Akhiani, S. Tahan Latibari, M. M. Mehrali, H. S. C. Metselaar, Int. Commun. Heat Mass Transfer 2015, 66, 23–31. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2015.05.007
- 94H. Cao, J. Bowers, Y. Ding, E. Mura, G. Zhang, G. Qiao, Q. Li, H. Cao, G. Qiao, Q. Li, Prog. Nat. Sci.: Mater. Int. 2018, 28 (2), 225–234. DOI: https://doi.org/10.1016/j.pnsc.2018.03.005
- 95J. P. Meyer, J. A. Olivier, Int. J. Heat Mass Transf. 2011, 54 (7–8), 1587–1597. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.026
- 96J. P. Meyer, J. A. Olivier, Int. J. Heat Mass Transf. 2011, 54 (7–8), 1598–1607. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.026
- 97N. P. Thakare, D. P. Barai, B. A. Bhanvase, in Towards Nanofluids for Large-Scale Industrial Applications, Elsevier, Amsterdam 2024.
- 98M. Faccini, G. Borja, M. Boerrigter, D. Morillo Martín, S. Martìnez Crespiera, S. Vázquez-Campos, L. Aubouy, D. Amantia, J. Nanomater. 2015, 2015 (1). DOI: https://doi.org/10.1155/2015/247471
- 99A. Batool, S. Valiyaveettil, ACS Sustainable Chem. Eng. 2020, 8 (35), 13481–13487. DOI: https://doi.org/10.1021/acssuschemeng.0c04511
- 100A. L. Holder, E. P. Vejerano, X. Zhou, L. C. Marr, Environ. Sci.: Processes Impacts. 2013, 15 (9), 1652–1664. DOI: https://doi.org/10.1039/C3EM00224A
- 101R. Gupta, H. Xie, J. Environ. Pathol. Toxicol. Oncol. 2018, 37 (3), 209–230. DOI: https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009