Silver Nanoparticles Synthesized Using Cymbopogon citratus (lemon grass) Leaf Extract for Antibacterial and Antidiabetic Activity
Corresponding Author
R. Renuka
PG & Research Department of Physics, Kalaignar Karunanidhi Government Arts College for Women (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India), Pudukkottai, Tamil Nadu, 622001 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorE. Tamil Selvi
Department of Physics, Government Arts College (Autonomous), Salem, Tamil Nadu, 636007 India
Search for more papers by this authorT. Thilagavathi
Department of Physics, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, 612001 India
Search for more papers by this authorA. Dhanalakshmi
PG & Research Department of Physics, Kalaignar Karunanidhi Government Arts College for Women (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India), Pudukkottai, Tamil Nadu, 622001 India
Search for more papers by this authorCorresponding Author
R. Uthrakumar
Department of Physics, Government Arts College (Autonomous), Salem, Tamil Nadu, 636007 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorK. Kaviyarasu
UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
Search for more papers by this authorHayfa Habes Almutairi
Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982 Saudi Arabia
Search for more papers by this authorNoorah Saleh Al-Sowayan
Department of Biology, College of Science, Qassim University, Buraydah, 52377 Saudi Arabia
Search for more papers by this authorCorresponding Author
Mir Waqas Alam
Department of Physics, College of Science, King Faisal University, Al-Ahsa, 31982 Saudi Arabia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
R. Renuka
PG & Research Department of Physics, Kalaignar Karunanidhi Government Arts College for Women (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India), Pudukkottai, Tamil Nadu, 622001 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorE. Tamil Selvi
Department of Physics, Government Arts College (Autonomous), Salem, Tamil Nadu, 636007 India
Search for more papers by this authorT. Thilagavathi
Department of Physics, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, 612001 India
Search for more papers by this authorA. Dhanalakshmi
PG & Research Department of Physics, Kalaignar Karunanidhi Government Arts College for Women (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India), Pudukkottai, Tamil Nadu, 622001 India
Search for more papers by this authorCorresponding Author
R. Uthrakumar
Department of Physics, Government Arts College (Autonomous), Salem, Tamil Nadu, 636007 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorK. Kaviyarasu
UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
Search for more papers by this authorHayfa Habes Almutairi
Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982 Saudi Arabia
Search for more papers by this authorNoorah Saleh Al-Sowayan
Department of Biology, College of Science, Qassim University, Buraydah, 52377 Saudi Arabia
Search for more papers by this authorCorresponding Author
Mir Waqas Alam
Department of Physics, College of Science, King Faisal University, Al-Ahsa, 31982 Saudi Arabia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Here AgNPs were synthesized from leaf extracts of Cymbopogon citratus (lemon grass), along with their antibacterial and antidiabetic properties. The reduction rate of AgNPs at 215, 235, and 302 nm was faster, and UV–vis tests were used to verify colloidal manufacture of AgNPs. Nevertheless, TEM revealed that the particles used in the study were spherical nanoparticles with a 40 nm size range. AgNPs may surround amines based on observations of a peak at 1531 cm−1, because ─NH2 symmetric stretching and N─O bonds are common in nitro compounds. Compared to leaf extract, AgNPs exhibit C─X stretching vibrations at 663 cm−1, indicating that alkyl halide groups are present. Experimental data revealed that the indexed peak has a lattice parameter of 4.0957. Besides gram-positive bacteria, AgNPs are also capable of killing multi-drug-resistant bacteria as well. As concentrations of AgNPs were increased, the percentage of inhibition activity increased, indicating that they are effective at controlling diabetes.
Conflict of Interest
The authors have declared no conflict of interest.
Open Research
Data Availability Statement
No datasets were generated or analyzed during the current study.
References
- 1A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, R. Venketesan, Nanomed. Nanotechnol. 2010, 6, 103–109.
- 2M. Singh, S. Singh, S. Prasad, I. Gambhir, Dig. J. Nanomater. Bio. 2008, 3, 115–122.
- 3K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, G. Sangiliyandi, Mater. Lett. 2008, 62, 4411–4413.
- 4I. H. Boyacı, Biochem. Eng. J. 2005, 25, 55–62.
- 5S. Logambal, T. Thilagavathi, M. Chandrasekar, C. Inmozhi, P. Belle Ebanda Kedi, F. A. Bassyouni, R. Uthrakumar, A. Muthukumaran, S. Naveenkumar, K. Kaviyarasu, J. King Saud Uni. Sci. 2023, 35, 102455.
- 6S. Logambal, M. Chandrasekar, R. Ashok Kumar, C. Inmozhi, S. Aravindan, R. Uthrakumar, S. Naveenkumar, A. Muthukumaran, K. Kaviyarasu, J. King Saud Uni. Sci. 2024, 36, 103169.
- 7H. S. Shin, H. C. Choi, Y. Jung, S. B. Kim, H. J. Song, H. J. Shin, Chem. Phy. Lett. 2004, 383, 418–422.
- 8A. I. El-Batal, A. A. M. Hashem, N. M. Abdelbaky, Springer Plus 2013, 2, 129.
- 9A N. Krklješ, M T. Marinović-Cincović, Z M. Kacarevic-Popovic, J M. Nedeljković, Eur. Polym. J. 2007, 43, 2171–2176.
- 10M. Guzman, J. Dille, S. Godet, Nanomed. Nanotechnol. 2012, 8, 37–45.
- 11R. Renuka, K. R Devi, M. Sivakami, T. Thilagavathi, R. Uthrakumar, K. Kaviyarasu, Biocatal. Agric. Biotechnol. 2020, 24, 101567.
- 12G. A. Otunola, A. J. Afolayan, E. O. Ajayi, S. W. Odeyemi, Pharmacogn. Mag. 2017, 13 (Suppl 2), S201–S208, DOI: https://doi.org/10.4103/pm.pm_430_16.
- 13C. Maheswari, M. Sathyabama, S. Chandrasekar, G. Gobi, C. Inmozhi, K. Parasuraman, R. Uthrakumar, J. King Saud Uni. Sci. 2022, 34, 102163.
- 14Q. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim, J. Biomed. Mater. Res. 2000, 52, 662–668.
- 15M. J. Yacamán, J. Ascencio, H. Liu, J. Gardea-Torresdey, J. Vac. Sci. Technol. 2001, 19, 1091–1103.
- 16M. Haruta, Catal. Today 1997, 36, 153–166.
- 17S. V. Kyriacou, W. J. Brownlow, X. H. N. Xu, Biochemistry 2004, 43, 140–147.
- 18A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, Nž Pizúrová, V K. Sharma, T. J. Nevěčná, R. Zbořil, J. Phys. Chem. B 2006, 110, 16248–16253.
- 19R. J. Holladay, W. Moeller, D. Mehta, R. Roy, J. H. Brooks, M. G. Mortenson, American Silver LLC, Silver/water, silver gels and silver-based compositions; and methods for making and using the same. U.S. Patent Application 11/813,408, 2011.
- 20J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, M. J. Yacaman, Nanotechnology 2005, 16, 2346–2353.
- 21Y. Li, P. Leung, L. Yao, Q. Song, E. Newton, J. Hosp. Infect. 2006, 62, 58–63.
- 22P. Jain, T. Pradeep, Biotechnol. Bioeng. 2005, 90, 59–63.
- 23W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, Y.-S. Ou-Yang, Y.-B. Chen, Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122.
- 24S. Iravani, H. Korbekandi, S. V. Mirmohammadi, B. Zolfaghari, Res. Pharm. Sci. 2014, 9, 385–406.
- 25E. Bharathi, G. Sivakumari, J. Kamalakkannan, B. Karthikeyan, S. Senthilvelan, Mater. Sci. Energy Technol. 2020, 3, 407–419.
- 26M. Venkatachalapathy, K. Sambathkumar, M. E. Rajasaravanan, R. Uthrakumar, K. Kaviyarasu, M. A. Yewale, M. Awad, M. W. Alam, Luminescence 2024, 39, e4768.
- 27S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282–286.
- 28S. H. Huang, M. Uppal, J. Shi, Supply Chain Manage. 2002, 7, 189–199.
10.1108/13598540210438935 Google Scholar
- 29W. Lu, C. M. Lieber, Nature Mater. 2007, 6, 841–850.
- 30R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A. C. Bose, Solid State Commun. 2009, 149 (43–44), 1919–1923, DOI: https://doi.org/10.1016/j.ssc.2009.07.043.
- 31V. Balzani, A. Credi, M. Venturi, Chem.—A Eur. J. 2002, 8, 5524–5532.
10.1002/1521-3765(20021216)8:24<5524::AID-CHEM5524>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 32E. M. Smeets, A. P. Faaij, I. M. Lewandowski, W. C. Turkenburg, Prog. Energy Combust. 2007, 33, 56–106.
- 33A. Bausch, K. Kroy, Nature Phys. 2006, 2, 231–238.
- 34N. Konappa, A. C. Udayashankar, N. Dhamodaran, S. Krishnamurthy, S. Jagannath, F. Uzma, C. K. Pradeep, S. De Britto, S. Chowdappa, S. Jogaiah, Biomolecules 2021, 11 (4), 535, DOI: https://doi.org/10.3390/biom11040535.
- 35O. V. Salata, J. Nanobiotechnol. 2004, 2, 3.
- 36S. S. Das, P. Bharadwaj, M. Bilal, M. Barani, A. Rahdar, P. Taboada, S. Bungau, G. Z. Kyzas, Polymers 2020, 12, 1397.
- 37M. Chen, Y. G. Feng, X. Wang, T. C. Li, J. Y. Zhang, D. J. Qian, Langmuir 2007, 23, 5296–5304.
- 38G. Ahmed Rather, S. Hassan, S. Pal, M. Hashim Khan, S. R. Heshu, J. Khan, Antimicrobial Efficacy of Biogenic Silver and Zinc Nanocrystals/Nanoparticles to Combat the Drug Resistance in Human Pathogens, Materials at the Nanoscale, IntechOpen Limited Publishing, London, United Kingdom 2021. DOI: https://doi.org/10.5772/intechopen.91597
- 39S. F. Chen, H. Zhang, Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 035006.
10.1088/2043-6262/3/3/035006 Google Scholar
- 40T. M. Dung Dang, T. T. Tuyet Le, E. Fribourg-Blanc, M. C. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 035004.
10.1088/2043-6262/3/3/035004 Google Scholar
- 41R. S. Patil, M. R. Kokate, C. L. Jambhale, S. M. Pawar, S. H. Han, S. S. Kolekar, Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 015013.
- 42J. H. Jung, H. Cheol Oh, H. Soo Noh, J Ho Ji, S. Soo Kim, J. Aerosol Sci. 2006, 37, 1662–1670.
- 43B. Perito, E. Giorgetti, P. Marsili, M. Muniz-Miranda, Beilstein J. Nanotechnol. 2016, 7, 465–473.
- 44M. C. Sportelli, M. Izzi, A. Volpe, M. Clemente, R. A. Picca, A. Ancona, P. M. Lugarà, G. Palazzo, N. Cioffi, Antibiotics 2018, 7, 67.
- 45R. K. Omole, R. C. George, O. I. Adeyemi, N. Torimiro, M. Saravanan, E. O. Agboluaje, M P. Xiong, BioNanoSci. 2024, 14, 688–698.
- 46S. Vairamuthu, S. Sampath, G. Sravanthy, M. Surya, R. Aruliah, M. A. H. Alshehri, B. Ramachandran, M. Saravanan, M. A. Belete, Results Chem. 2024, 11, 101783.