An Electrochemical Detection of Malathion Pesticide Using Cu Electrode and Enhanced by Machine Learning
Ashirbad Khuntia
Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
Department of Electronics and Communication Engineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
Search for more papers by this authorCorresponding Author
Madhusree Kundu
Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
E-mail: [email protected]
Search for more papers by this authorKamalakanta Mahapatra
Department of Electronics and Communication Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
Search for more papers by this authorAdhidesh Kumawat
Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
Search for more papers by this authorAshirbad Khuntia
Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
Department of Electronics and Communication Engineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
Search for more papers by this authorCorresponding Author
Madhusree Kundu
Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
E-mail: [email protected]
Search for more papers by this authorKamalakanta Mahapatra
Department of Electronics and Communication Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
Search for more papers by this authorAdhidesh Kumawat
Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
Search for more papers by this authorAbstract
The present work demonstrates the development of an economical and user-friendly “copper rods” sensor for detecting malathion. Differential pulse voltammetry (DPV) was performed to observe the inhibition ratio at various concentrations of malathion, which increases with an increase in malathion concentration. The parameters like pH and accumulation time were optimized at 4 pH and 18 min, respectively, corresponding to the maximum inhibition ratio (ΔI/I0). The electrochemical sensor had a relative standard deviation (RSD) of up to 7.05 % (n = 3), which indicated reproducible results. The regression line showed linearity over a range of 25–200 parts per billion (ppb), and the limit of quantification (LOQ) was as low as 25 ppb (75.67 nM). The developed sensor was sensitive and selective, with a limit of detection (LOD) as low as 1 ppb (3.03 nM). The selectivity of the sensor was also studied by adding Pb(NO3)2, Zn(NO3)2, and NiCl2 to a solution of fixed malathion concentration, and minimal interference was observed. The sensor's functionality was validated using an unknown concentration of malathion with 96 % and 106 % recovery, respectively. The sensitivity of this proposed sensor was 0.0165 µA ppb−1. Quantification of malathion was also facilitated using partial least squares (PLS) algorithms utilizing the sensory measurements of the malathion-contaminated samples. PLS is a statistical machine learning algorithm that has been used here to develop a predictor for unknown malathion concentration using the DPV current signatures of the contaminated solution with a nominal error of 5.0 %.
Open Research
Data Availability Statement
Data will be available upon reasonable request.
References
- 1P. F. P. Barbosa, E. G. Vieira, L. R. Cumba, L. L. Paim, A. P. R. Nakamura, R. D. A. Andrade, D. R. do Carmo, Int. J. Electrochem. Sci. 2019, 14 (4), 3418–3433. DOI: https://doi.org/10.20964/2019.04.60
- 2Chansi, R. Bhardwaj, R. P. Rao, I. Mukherjee, P. K. Agrawal, T. Basu, L. M. Bharadwaj, J. Electroanal. Chem. 2020, 873, 114386. DOI: https://doi.org/10.1016/j.jelechem.2020.114386
- 3À. P. Sirera, D. Antichi, D. W. Raffa, G. Rallo, Remote Sens. 2021, 13 (4), 1–25. DOI: https://doi.org/10.3390/rs13040716
10.3390/rs13040716 Google Scholar
- 4M. Occelli, A. Mantino, G. Ragaglini, M. Dell'Acqua, C. Fadda, M. E. Pè, A. Nuvolari, Agron. Sustain. Dev. 2021, 41 (1), 9. DOI: https://doi.org/10.1007/s13593-020-00664-x
- 5C. Altenbuchner, S. Vogel, M. Larcher, Renew. Agric. Food Syst. 2018, 33 (4), 373–385. DOI: https://doi.org/10.1017/S174217051700014X
- 6P. Seth, M. Ranjan Mahananda, Int. J. Environ. Agric. Res. ISSN 2016, 2 (12), 101–107.
- 7A. Nawaz, M. Farooq, S. Ul-Allah, N. Gogoi, R. Lal, K. H. M. Siddique, J. Soil Sci. Plant Nutr. 2021, 21 (1), 258–275. DOI: https://doi.org/10.1007/s42729-020-00358-z
- 8S. Mishra, S. S. Patel, S. P. Singh, P. Kumar, M. A. Khan, H. Awasthi, S. Singh, Environ. Pollut. 2022, 310, 119804. DOI: https://doi.org/10.1016/j.envpol.2022.119804
- 9H. Musarurwa, N. Tawanda Tavengwa, Chemosphere 2021, 266, 129222. DOI: https://doi.org/10.1016/j.chemosphere.2020.129222
- 10M. Tudi, H. Daniel Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, D. T. Phung, Int. J. Environ. Res. Public Health 2021, 18 (3), 1112. DOI: https://doi.org/10.3390/ijerph18031112
- 11M. A. Hassaan, A. El Nemr, Egypt. J. Aquat. Res. 2020, 46 (3), 207–220. DOI: https://doi.org/10.1016/j.ejar.2020.08.007
- 12V. P. Kalyabina, E. N. Esimbekova, K. V. Kopylova, V. A. Kratasyuk, Toxicol. Rep. 2021, 8, 1179–1192. DOI: https://doi.org/10.1016/j.toxrep.2021.06.004
- 13R. Umapathi, S. M. Ghoreishian, S. Sonwal, G. M. Rani, Y. S. Huh, Coord. Chem. Rev. 2022, 453, 214305. DOI: https://doi.org/10.1016/j.ccr.2021.214305
- 14R. Zamora-Sequeira, R. Starbird-Pérez, O. Rojas-Carillo, S. Vargas-Villalobos, Molecules 2019, 24 (14), 1–26. DOI: https://doi.org/10.3390/molecules24142659
- 15D. Song, Y. Li, X. Lu, M. Sun, H. Liu, G. Yu, F. Gao, Anal. Chim. Acta 2017, 982, 168–175. DOI: https://doi.org/10.1016/j.aca.2017.06.004
- 16R. A. Soomro, K. R. Hallam, Z. H. Ibupoto, A. Tahira, S. T. H. Sherazi, Sirajjuddin, S. S. Memon, M. Willander, Electrochim. Acta 2016, 190, 972–979. DOI: https://doi.org/10.1016/j.electacta.2015.12.165
- 17W. Guo, B. J. Engelman, T. L. Haywood, N. B. Blok, D. S. Beaudoin, S. O. Obare, Talanta 2011, 87 (1), 276–283. DOI: https://doi.org/10.1016/j.talanta.2011.10.015
- 18A. M. Al'Abri, S. N. Abdul Halim, N. K. Abu Bakar, S. M. Saharin, B. Sherino, H. Rashidi Nodeh, S. Mohamad, J. Environ. Sci. Heal.–Part B Pestic. Food Contam. Agric. Wastes 2019, 54 (12), 930–941. DOI: https://doi.org/10.1080/03601234.2019.1652072
- 19X. Hou, H. Xu, T. Zhen, W. Wu, Trends Food Sci. Technol. 2020, 105, 76–92. DOI: https://doi.org/10.1016/j.tifs.2020.09.004
- 20E. Skotadis, A. Kanaris, E. Aslanidis, P. Michalis, N. Kalatzis, F. Chatzipapadopoulos, N. Marianos, D. Tsoukalas, Comput. Electron. Agric. 2020, 178, 105759. DOI: https://doi.org/10.1016/j.compag.2020.105759
- 21L. He, B. Cui, J. Liu, Y. Song, M. Wang, D. Peng, Z. Zhang, Sens. Actuators, B Chem. 2018, 258, 813–821. DOI: https://doi.org/10.1016/j.snb.2017.11.161
- 22G. Bolat, S. Abaci, Sensors (Switzerland) 2018, 18 (3), 773. DOI: https://doi.org/10.3390/s18030773
- 23S. Li, L. M. Qu, J. F. Wang, X. Q. Ran, X. Niu, Int. J. Electrochem. Sci. 2020, 15 (1), 505–514. DOI: https://doi.org/10.20964/2020.01.75
- 24A. P. Singh, S. Balayan, V. Hooda, R. K. Sarin, N. Chauhan, Int. J. Biol. Macromol. 2020, 164, 3943–3952. DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.215
- 25P. Chaudhari, L.-K. Chau, L. T. Ngo, T.-C. Chang, Y.-L. Chen, K.-T. Huang, Anal. Chem. 2023, 95 (39), 14600–14607. DOI: https://doi.org/10.1021/acs.analchem.3c01960
- 26M. A. Irfan Azizan, S. Taufik, M. N. Norizan, J. I. Abdul Rashid, Biosens. Bioelectron. X. 2023, 13, 100291. DOI: https://doi.org/10.1016/j.biosx.2022.100291
- 27K. Gangadhara Reddy, G. Madhavi, B. E. Kumara Swamy, J. Mol. Liq. 2014, 198, 181–186. DOI: https://doi.org/10.1016/j.molliq.2014.06.019
- 28S. Ebrahim, R. El-Raey, A. Hefnawy, H. Ibrahim, M. Soliman, T. M. Abdel-Fattah, Synth. Met. 2014, 190, 13–19. DOI: https://doi.org/10.1016/j.synthmet.2014.01.021
- 29L. Gurusamy, R.-W. Cheng, S. Anandan, C.-H. Liu, J. J. Wu, Materials (Basel) 2023, 16 (22), 7065. DOI: https://doi.org/10.3390/ma16227065
- 30P. Sakdarat, J. Chongsuebsirikul, C. Thanachayanont, S. Prichanont, P. Pungetmongkol, J. Nanomater. 2021, 2021, 1–11. DOI: https://doi.org/10.1155/2021/6623668
- 31S. Wold, M. Sjöström, L. Eriksson, Chemom. Intell. Lab. Syst. 2001, 58 (2), 109–130. DOI: https://doi.org/10.1016/S0169-7439(01)00155-1
- 32S. J. Qin, T. J. McAvoy, Comput. Chem. Eng. 1992, 16 (4), 379–391. DOI: https://doi.org/10.1016/0098-1354(92)80055-E
- 33S. J. Qin, Proc. 8th IEEE Int. Symp. Intell. Control, IEEE. 1993, 599–604. DOI: https://doi.org/10.1109/ISIC.1993.397629
- 34S. J. Qin, T. J. McAvoy, Comput. Chem. Eng. 1996, 20 (2), 147–159. DOI: https://doi.org/10.1016/0098-1354(95)00011-P
- 35J. Hair, A. Alamer, Res. Methods Appl. Ling. 2022, 1 (3), 100027. DOI: https://doi.org/10.1016/j.rmal.2022.100027
10.1016/j.rmal.2022.100027 Google Scholar
- 36M. H. Kaspar, W. Harmon Ray, Chem. Eng. Sci. 1993, 48 (20), 3447–3461. DOI: https://doi.org/10.1016/0009-2509(93)85001-6
- 37P. K. Kundu, P. C. Panchariya, M. Kundu, ISA Trans. 2011, 50 (3), 487–495. DOI: https://doi.org/10.1016/j.isatra.2011.03.003
- 38R. Chandra, M. Kundu, Chem. Prod. Process Model. 2024, 19 (1), 135–145. DOI: https://doi.org/10.1515/cppm-2023-0074
- 39Y. Dang, Y. V. M. Reddy, M. Cheffena, Sens. Actuators B Chem. 2024, 419, 136409. DOI: https://doi.org/10.1016/j.snb.2024.136409
- 40A. Khuntia, A. S. Kumawat, M. Kundu, Mater. Today Proc. 2022, 62 (P10), 6227–6231. DOI: https://doi.org/10.1016/j.matpr.2022.05.103
- 41B. A. Mohamed, P. Janaki, J. Appl. Nat. Sci. 2021, 13 (SI), 110–123. DOI: https://doi.org/10.31018/jans.v13iSI.2809
- 42W. Yazhen, Q. Hongxin, H. Siqian, X. Junhui, Sens. Actuators, B Chem. 2010, 147 (2), 587–592. DOI: https://doi.org/10.1016/j.snb.2010.03.034
10.1016/j.snb.2010.03.034 Google Scholar
- 43A. H. Dabhade, R. P. Verma, B. Paramasivan, A. Kumawat, B. Saha, 3 Biotech 2023, 13 (7), 1–15. DOI: https://doi.org/10.1007/s13205-023-03663-3
- 44G. A. T. Battad, J. G. Estacio, J. L. C. Indiongco, M. L. Mopon, Key Engineering Materials, Vol. 841, Trans Tech Publications Ltd, Switzerland 2020, 41–47.
- 45A. Vinotha Alex, A. Mukherjee, Microchem. J. 2021, 161, 105779. DOI: https://doi.org/10.1016/j.microc.2020.105779
- 46G. Ghosh, Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological Aspects, Elsevier, United Kingdom 2023.
- 47W.-B. Tseng, M.-M. Hsieh, C.-H. Chen, T.-C. Chiu, W.-L. Tseng, J. Food Drug Anal. 2020, 28 (4), 522–539. DOI: https://doi.org/10.38212/2224-6614.1092
- 48C. He, R. Yan, X. Gao, Q. Xue, H. Wang, Sens. Actuators B Chem. 2023, 385, 133697. DOI: https://doi.org/10.1016/j.snb.2023.133697
- 49H. Li, C. Wu, X. Wang, K. Wang, Y. Zhu, S. Zhang, Chem. Pap. 2022, 76 (6), 3285–3302. DOI: https://doi.org/10.1007/s11696-022-02073-8
- 50A. Akdag, M. Işık, H. Göktaş, Biotechnol. Appl. Biochem. 2020, 68, 1113–1119. DOI: https://doi.org/10.1002/bab.2030
- 51S. Tanwar, D. Mathur, J. Solid State Electrochem. 2021, 25 (8–9), 2145–2159. DOI: https://doi.org/10.1007/s10008-021-04990-2
- 52J. Lu, X. Shan, Q. Wu, Y. Zhao, C. Li, H. Li, S. Yang, L. Tian, Microchem. J. 2023, 186, 108321. DOI: https://doi.org/10.1016/j.microc.2022.108321
- 53C. K. Dindar, C. Erkmen, B. Uslu, Trends Environ. Anal. Chem. 2021, 32, e00145. DOI: https://doi.org/10.1016/j.teac.2021.e00145
- 54P. Walter, A. Pepłowski, Ł. Górski, D. Janczak, M. Jakubowska, Microelectron. Int. 2019, 36 (3), 120–126. DOI: https://doi.org/10.1108/MI-12-2018-0084