Modified Fractional-Order PID Controller Design for the Mixing Tank Process
Parmanand Maurya
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), BHU Campus, Varanasi, 221005 India
Search for more papers by this authorNilanjan Paul
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), BHU Campus, Varanasi, 221005 India
Search for more papers by this authorDurga Prasad
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), BHU Campus, Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Ram Sharan Singh
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), BHU Campus, Varanasi, 221005 India
Email: [email protected]
Search for more papers by this authorParmanand Maurya
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), BHU Campus, Varanasi, 221005 India
Search for more papers by this authorNilanjan Paul
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), BHU Campus, Varanasi, 221005 India
Search for more papers by this authorDurga Prasad
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), BHU Campus, Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Ram Sharan Singh
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), BHU Campus, Varanasi, 221005 India
Email: [email protected]
Search for more papers by this authorAbstract
Controlling multiple input–multiple output (MIMO) processes is challenging due to loop interactions. This study explores a modified fractional-order PID (MFOPID) controller for a two-input, two-output mixing tank system. MFOPID design involves individual loop controllers based on the Nelder–Mead algorithm. Relative gain array analysis optimizes loop interactions, complemented by a simplified decoupler. Comparative evaluation against Ziegler–Nichols, internal model control, and standard FOPID controllers demonstrates a superior performance of MFOPID controller offering smoother signals and demonstrating significant improvement in various performance indices. These findings underscore the efficacy of the MFOPID controller in enhancing control performance in MIMO systems.
Open Research
Data Availability Statement
The data supporting this study's findings are available from the corresponding author upon reasonable request.
References
- 1U. M. Nath, C. Dey, R. K. Mudi, IETE J. Res. 2023, 69 (3), 1640–1660. DOI: https://doi.org/10.1080/03772063.2021.1874839
- 2H., Shaikh, N. Kulkarni, M. Bakshi, Computational Intelligence: Select Proceedings of InCITe, Springer, Singapore 2023, 663–676. DOI: https://doi.org/10.1007/978-
- 3A. F. Zrigan, A. J. Abougarair, M. K. Elmezughi, A. M. Almaktoof, Optimized PID Controller and Generalized Inverted Decoupling Design for MIMO System, IEEE Int. Conf. on Advanced Systems and Emergent Technologies, Hammamet, Tunisia, 2023, 1–6. DOI: https://doi.org/10.1109/IC_ASET58101.2023.10150957
10.1109/IC_ASET58101.2023.10150957 Google Scholar
- 4T. R. Biyanto, N. A. Sordi, N. Sehamat, H. Zabiri, IOP Conf. Ser.: Mater. Sci. Eng. 2018, 458 (1), 012052. DOI: https://doi.org/10.1088/1757-899X/458/1/012052
10.1088/1757-899X/458/1/012052 Google Scholar
- 5K. A. Govind, S. Mahapatra, S. R. Mahapatro, Arabian J. Sci. Eng. 2023, 49 (5), 6587–6611. DOI: https://doi.org/10.1007/s13369-023-08348-w
- 6A. G. KR, S. Mahapatra, Int. J. Model. Ident. Control 2023, 43 (4), 336–351. DOI: https://doi.org/10.1504/IJMIC.2023.133434
10.1504/IJMIC.2023.133434 Google Scholar
- 7K. Achu Govind, S. Mahapatra, S. R. Mahapatro, Arabian J. Sci. Eng. 2023, 48 (11), 15377–15402. DOI: https://doi.org/10.1007/s13369-023-08076-1
- 8D. Li, F. Gao, Y. Xue, C. Lu, Asian J. Control 2007, 9 (3), 306–316. DOI: https://doi.org/10.1111/j.1934-6093.2007.tb00416.x
- 9Q. Xiong, W.-J. Cai, M.-J. He, J. Process Control 2007, 17 (8), 665–673. DOI: https://doi.org/10.1016/j.jprocont.2007.01.004
- 10H. R. Mokadam, B. M. Patre, D. K. Maghade, Int. J. Autom. Control 2013, 7 (1/2), 21. DOI: https://doi.org/10.1504/IJAAC.2013.055094
10.1504/IJAAC.2013.055094 Google Scholar
- 11P. E. McDermott, D. A. Mellichamp, Optim. Control Appl. Methods 1986, 7 (1), 55–79. DOI: https://doi.org/10.1002/oca.4660070105
- 12W.-J. Cai, W. Ni, M.-J. He, C.-Y. Ni, Ind. Eng. Chem. Res. 2008, 47 (19), 7347–7356. DOI: https://doi.org/10.1021/ie8006165
- 13A. N. Gündeş, A. N. Mete, A. Palazoğlu, Automatica 2009, 45 (2), 353–363. DOI: https://doi.org/10.1016/j.automatica.2008.08.014
- 14J. Chen, Y.-C. Cheng, Y. Yea, Korean J. Chem. Eng. 2005, 22 (2), 173–183. DOI: https://doi.org/10.1007/BF02701481
- 15S. Lee, S. Yeom, K. S. Lee, Korean J. Chem. Eng. 2004, 21 (3), 575–581. DOI: https://doi.org/10.1007/BF02705490
- 16B.-S. Ko, T. F. Edgar, J. Lee, Korean J. Chem. Eng. 2004, 21 (1), 1–5. DOI: https://doi.org/10.1007/BF02705373
- 17L. Ballotta, M. R. Jovanović, L. Schenato, IEEE Trans. Control Network Syst. 2023, 10 (3), 1629–1640. DOI: https://doi.org/10.1109/TCNS.2023.3237483
- 18P. J. Campo, M. Morari, IEEE Trans. Autom. Control 1994, 39 (5), 932–943. DOI: https://doi.org/10.1109/9.284869
- 19D. Chen, D. E. Seborg, AIChE J. 2002, 48 (2), 302–310. DOI: https://doi.org/10.1002/aic.690480214
- 20Z. Chunna, X. Dingyu, A Fractional Order PID Tuning Algorithm for a Class of Fractional Order Plants, IEEE Int. Conf. Mechatronics Autom, Niagara Falls, Canada, 2005, 216–221. DOI: https://doi.org/10.1109/ICMA.2005.1626550
10.1109/ICMA.2005.1626550 Google Scholar
- 21K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier 1974.
- 22M. A. Fawwaz, K. Bingi, R. Ibrahim, P. A. M. Devan, B. R. Prusty, Algorithms 2023, 16 (9), 437. DOI: https://doi.org/10.3390/a16090437
- 23A. Daraz, et al., IEEE Access, 2020, 8, 197757–197775. DOI: https://doi.org/10.1109/ACCESS.2020.3033983
- 24R. Meena, S. Chakraborty, V. C. Pal, Int. J. Chem. React. Eng. 2023, 21 (11), 1403–1421. DOI: https://doi.org/10.1016/j.ijepes.2021.107528
- 25A. Tabak, Sustainability 2023, 15 (15), 11640. DOI: https://doi.org/10.3390/su151511640
- 26Z. Wu, J. Viola, Y. Luo, Y. Chen, D. Li, Int. J. Control. 2024, 97 (1), 111–129. DOI: https://doi.org/10.1080/00207179.2021.1992498
- 27D. Mukherjee, G. L Raja, P. Kundu, A. Ghosh, Asian J. Control. 2023, 25 (3), 2165–2182. DOI: https://doi.org/10.1002/asjc.2887
- 28P. Maurya, N. Paul, D. Prasad, R. S. Singh, Can. J. Chem. Eng. 2024, 102 (9), 3173–3191. DOI: https://doi.org/10.1002/cjce.25254
- 29A. M. d. Almeida, M. K. Lenzi, E. K. Lenzi, Fractal Fract. 2020, 4 (2), 22. DOI: https://doi.org/10.3390/fractalfract4020022
- 30A. R. Thelkar, C. Bharatiraja, M. Teka, M. Gonfa, T. Shoga, A. Feyo, T. Mekonnen, FME Trans. 2023, 51 (3), 362–373. DOI: https://doi.org/10.5937/fme2303362T
- 31L. Sami, B. Badreddine, G. Hamza, B. Djalil, Comparison of Optimal PI and FOPI Controllers Tuned by PSO Algorithm for FO-TITO Process with Fractional Inverted Decoupling, Int. Conf. on Electrical Engineering and Control Applications, Springer, October 2024.
- 32A. Divya Teja, R. Kiranmayi, K. Nagabhushanam, N. Swathi, Simplified Decoupler Based Fractional Order PID Controller for Two Variable Fractional Order Process, Int. Conf. on Artificial Intelligence for Smart Community, Springer, November 2022.
- 33A. M. D. Almeida, M. K. Lenzi, E. K. Lenzi, Cuad. Educ. Desarro. 2024, 16 (10), e6021. DOI: https://doi.org/10.55905/cuadv16n10-131
10.55905/cuadv16n10-131 Google Scholar
- 34A. G. Kottayathu Rajagopalan, S. Mahapatra, S. R. Mahapatro, Int. J. Numer. Modell. Electron. Networks Devices Fields 2024, 37 (2), e3228. DOI: https://doi.org/10.1002/jnm.3228
- 35A.-A. Zamani, S. Etedali, J. Vib. Control 2023, 29 (3–4), 802–819. DOI: https://doi.org/10.1177/10775463211053188
- 36O. Arrieta, A. Barbieri, H. Meneses, F. Padula, R. Vilanova, A. Visioli, IFAC-Pap. OnLine 2023, 56 (2), 3284–3289. DOI: https://doi.org/10.1016/j.ifacol.2023.10.1470
10.1016/j.ifacol.2023.10.1470 Google Scholar
- 37C. Ben Djaballah, W. Nouibat, R. Ayad, Soft Comput. 2024, 28 (17), 10281–10299. DOI: https://doi.org/10.1007/s00500-024-09776-y
10.1007/s00500-024-09776-y Google Scholar
- 38M. Moradi, J. Process Control 2014, 24 (4), 336–343. DOI: https://doi.org/10.1016/j.jprocont.2014.02.006
- 39A. Djari, T. Bouden, A. Boulkroune, Design of Fractional-Order PID Controller (FOPID) for a Class of Fractional-Order MIMO Systems Using a Particle Swarm Optimization (PSO) Approach, 3rd Int. Conf. on Systems and Control, IEEE, October 2013.
- 40I. Podlubny, Inst. Exp. Phys., Slovak Acad. Sci., Kosice, 1994, 12 (3), 1–18.
- 41Y. Chen, I. Petras, D. Xue, Fractional Order Control – A Tutorial, 2009 American Control Conference, St. Louis, MO, USA, 2009, 1397–1411. DOI: https://doi.org/10.1109/ACC.2009.5160719
10.1109/ACC.2009.5160719 Google Scholar
- 42X. Dingyu, Y. Chen, Proc. of the 4th WCICA, Shanghai, China, 2002, 3228–3235. DOI: https://doi.org/10.1109/WCICA.2002.1020131
10.1109/WCICA.2002.1020131 Google Scholar
- 43X. J. Wen, Z. M. Wu, J. G. Lu, IEEE Trans. Circuits Syst. Express Briefs 2008, 55 (11), 1178–1182. DOI: https://doi.org/10.1109/TCSII.2008.2002571
- 44A. Tepljakov, B. B. Alagoz, C. Yeroglu, E. A. Gonzalez, S. H. Hosseinnia, E. Petlenkov, A. Ates, M. Cech, IEEE Access 2021, 9, 21016–21042. DOI: https://doi.org/10.1109/ACCESS.2021.3055117
- 45Y. Arya, J. Franklin Inst. 2019, 356 (11), 5611–5629. DOI: https://doi.org/10.1016/j.jfranklin.2019.02.034
- 46B. A. Ogunnaike, W. H. Ray, Process Dynamics, Modeling, and Control, Oxford University Press, Oxford 1994.
- 47A. O. Babatunde, W. H. Ray, Process Dynamics, Modeling, and Control, Oxford University Press, Oxford 1994.
- 48I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, arXiv preprint math/0110241, 2001. DOI: https://doi.org/10.48550/arXiv.math/0110241
10.48550/arXiv.math/0110241 Google Scholar
- 49I. Tejado, B. M. Vinagre, J. E. Traver, J. Prieto-Arranz, C. Nuevo-Gallardo, Mathematics 2019, 7 (6), 530. DOI: https://doi.org/10.3390/math7060530
- 50A. Daraz, S. A. Malik, A. Basit, S. Aslam, G. Zhang, Fractal Fract. 2023, 7 (1), 89. DOI: https://doi.org/10.3390/fractalfract7010089
- 51J. G. Segovia-Hernández, A. Bonilla-Petriciolet, L. I. Salcedo-Estrada, Korean J. Chem. Eng. 2006, 23 (5), 689–698. DOI: https://doi.org/10.1007/BF02705913
- 52G. Stanley, M. Marino-Galarraga, T. J. McAvoy, Ind. Eng. Chem. Process Des. Dev.1985, 24 (4), 1181–1188. DOI: https://doi.org/10.1021/i200031a048
- 53E. Bristol, IEEE Trans. Autom. Control 1966, 11 (1), 133–134. DOI: https://doi.org/10.1109/TAC.1966.1098266
- 54L. Liu, S. Tian, D. Xue, T. Zhang, Y. Chen, S. Zhang, Int. J. Control Autom. Syst. 2019, 17 (5), 1246–1254. DOI: https://doi.org/10.1007/s12555-018-0367-4
- 55J. Garrido, F. Vázquez, F. Morilla, J. Process Control 2012, 22 (6), 1044–1062. DOI: https://doi.org/10.1016/j.jprocont.2012.04.008
- 56E. Gagnon, A. Pomerleau, A. Desbiens, ISA Trans. 1998, 37 (4), 265–276. DOI: https://doi.org/10.1016/S0019-0578(98)00023-8