Synergy between Copper and Silver Nanoparticles for the Removal of Thiophenic Compounds in Fuel Oil
Corresponding Author
Shuo Ai
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYihan Yang
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 P. R. China
Search for more papers by this authorKaili Gao
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 P. R. China
Search for more papers by this authorCorresponding Author
Wanguo Yu
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuo Ai
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYihan Yang
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 P. R. China
Search for more papers by this authorKaili Gao
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 P. R. China
Search for more papers by this authorCorresponding Author
Wanguo Yu
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Thiophenic compounds in fuel oils lead to the emission of SOx pollutants. Zero-valence Cu and Ag particles were supported on carbonized cellulose via reduction reactions. Only Cu(0) and Ag(0) microcrystals with sizes of 4–15 nm and 10–30 nm had high thiophene adsorption capacity. The growth of Cu crystals was inhibited by Ag+, whereas the dispersion and loading of Ag were promoted by Cu2+. The removal rates for thiophenic compounds in high-sulfur content oil reached 35.3–54.3 %. The steric hindrance of substituent groups had a negative impact on the desulfurization effect. The thiophene adsorption capacity reached 8.7 mg sulfur/g. This thiophene adsorption process agreed with Elovich and second-order kinetics as well as Langmuir and Freundlich models, implying that a monolayer of thiophene was adsorbed on a heterogeneous surface via chemisorption. The coordination interactions between sulfur and metals dominated the adsorption process.
References
- 1M. A. Rezvani, H. H. Ardeshiri, Z. Aghasadeghi, Energy Fuels 2023, 37, 2245–2254.
- 2X. Weng, L. Cao, G. Zhang, F. Chen, L. Zhao, Y. Zhang, J. Gao, C. Xu, Ind. Eng. Chem. Res. 2020, 59, 21261–21274.
- 3C. F. Linares, P. Bretto, React. Kinet., Mech. Catal. 2023, 136, 837–849.
- 4S. Li, J. Wu, W. Zhang, Y. Jiang, M. Hu, K. H. Chung, Q. Shi, Anal. Bioanal. Chem. 2023, 415, 1889–1896.
- 5H. Yang, J. Bai, Q. Zhang, L. Yang, L. Bai, D. Wei, W. Wang, Y. Liang, L. Gu, H. Chen, S. Guo, Chem. Sci. 2022, 13, 14063–14069.
- 6M. A. Rezvani, N. Khalafi, J. Coord. Chem. 2020, 73, 3395–3411.
- 7A. Maalaoui, H. Guedidi, M. Rzaigui, S. Akriche, Energy Fuels 2024, 38, 1319–1329.
- 8J. Bai, Y. Song, C. Wang, H. Chen, D. Wei, L. Bai, W. Wang, L. Yang, Y. Liang, H. Yang, Energy Fuels 2021, 35, 12310–12318.
- 9M. A. Rezvani, S. Khandan, Solid State Sci. 2019, 98, 106036.
- 10M. A. Rezvani, N. Khalafi, Mater. Today Commun. 2020, 22, 100730.
- 11S. Q. Wang, L. Zhou, W. Su, Y. Sun, Y. Zhou, AIChE J. 2009, 55, 1872–1881.
- 12J. Li, Z. Wang, X. Tang, X. Lei, Ind. Eng. Chem. Res. 2020, 59, 10338–10347.
- 13W. Jiang, W. Zhu, H. Li, X. Wang, S. Yin, Y. Chang, H. Li, Fuel 2015, 140, 590–596.
- 14W. Zhang, Y. Dai, J. Xing, Z. Chen, X. Liu, P. Cui, Z. Zhu, J. gao, Y. Wang, J. Mol. Liq. 2022, 353, 118785.
- 15J. Kareem, A. Abbott, K. Ryder, Energy Fuels 2019, 33, 1106–1113.
- 16D. Peralta, G. Chaplais, A. Simon-Masseron, K. Barthelet, G. D. Pirngruber, Energy Fuels 2012, 26, 4953–4960.
- 17M. Ghassa, F. Khorashe, Z. Hajjar, S. Soltanali, Energy Fuels 2023, 37, 6490–6502.
- 18L. Yin, J. Xu, B. Zhang, L. Wang, W. Tao, X. Teng, W. Ning, Z. Zhang, Chem. Eng. J. 2022, 428, 132581.
- 19Y. X. Li, J. X. Shen, S. S. Peng, J. K. Zhang, J. Wu, X. Q. Liu, L. B. Sun, Nat. Commun. 2020, 11, 3206.
- 20S. Ai, H. Sui, H. Li, Ind. Eng. Chem. Res. 2012, 51, 12337–12343.
- 21X. Li, S. Ai, Y. Huang, C. Huang, W. Yu, Z. Mao, Environ. Sci. Pollut. Res. 2021, 28, 2741–2752.
- 22Y. Liu, J. Liao, L. Chang, W. Bao, Fuel 2022, 311, 122537.
- 23Y. Sun, K. Fan, J. Li, L. Wang, Y. Yang, Z. Li, M. Shao, X. Duan, Nat. Commun. 2024, 15, 6098.
- 24Y. Yin, X. Ge, J. Ouyang, N. Na, Nat. Commun. 2024, 15, 2954.
- 25S. Ai, Y. Qin, Y. Hong, L. Liu, W. Yu, Environ. Pollut. 2022, 314, 120215.
- 26S. Lagergren, Handlinger 1898, 24, 1–39.
- 27Y. S. Ho, G. McKay, Process Biochem. 1999, 34, 451–465.
- 28K. Wu, C. Y. Jing, J. Zhang, T. Liu, S. J. Yang, W. D. Wang, Appl. Surf. Sci. 2019, 466, 746–756.
- 29C. Jiang, X. Wang, D. Qin, W. Da, B. Hou, C. Hao, J. Wu, J. Hazard. Mater. 2019, 369, 50–61.
- 30A. Waheed, M. Mansha, I. W. Kazi, N. Ullah, J. Hazard. Mater. 2019, 369, 528–538.
- 31D. Malwal, P. Gopinath, J. Hazard. Mater. 2017, 321, 611–621.
- 32I. Langmuir, J. Am. Chem. Soc. 1917, 40, 1361–1403.
10.1021/ja02242a004 Google Scholar
- 33M. D. Olawale, A. C. Tella, J. A. Obaleye, J. S. Olatunji, New J. Chem. 2020, 44, 3961–3969.
- 34H. Freundlich, Zeitschrift Für Phys. Chemie. 1907, 57, 385–470.
- 35Y. Du, K. Ni, Q. Zhai, Y. Yun, Y. Xu, H. Sheng, Y. Zhu, M. Zhu, Appl. Catal. A 2018, 557, 72–78.
- 36C. Gao, W. Yu, M. Du, B. Zhu, W. Wu, Y. Liang, D. Wu, B. Wang, M. Wang, J. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 33694–33702.
- 37M. Seredych, T. J. Bandosz, J. Mater. Chem. 2012, 22, 23525–23533.
- 38A. Fahmy, A. Schönhals, J. Friedrich, J. Phys. Chem. B 2013, 117, 10603–10611.
- 39P. Albrecht, D.-E. Jiang, D. Mullins, J. Phys. Chem. C 2014, 118, 9042–9050.
- 40J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, Y. Huang, Langmuir 2006, 22, 1307–1312.
- 41W. Qin, Y. Wang, Y. Huang, Z. Zhou, C. Yang, C. Q. Sun, J. Phys. Chem. A 2012, 116, 7892–7897.
- 42C. Yu, G. Li, S. Kumar, K. Yang, R. Jin, Adv. Mater. 2014, 26, 892–898.
- 43T. K. Naiya, A. K. Bhattacharya, S. Mandal, S. K. Das, J. Hazard. Mater. 2009, 163, 1254–1264.
- 44J. Liu, H. Cui, J. Li, M. Chen, J. Environ. Chem. Eng. 2021, 9, 104621.
- 45C. Hu, J. Jiang, Y. An, X. Jiang, Q. Sun, H. Zheng, H. Li, Chem. Eng. J. 2022, 429, 132227.
- 46C.-H. Chen, A. Halford, M. Walker, C. Brennan, S. C. S. Lai, D. J. Fermin, P. R. Unwin, P. Rodriguez, J. Electroanal. Chem. 2018, 816, 138–148.
- 47M. Iwasaki, T. Fujii, A. Yamamoto, K. Nakajima, Y. Nishihara, Chem. – Asian J. 2014, 9, 58–62.
- 48D. von Deak, D. Singh, E. J. Biddinger, J. C. King, B. Bayram, J. T. Miller, U. S. Ozkan, J. Catal. 2012, 285, 145–151.
- 49F. Subhan, S. Aslam, Z. Yan, A. Ahmad, U. J. Etim, M. Naeem, L. Zhen, M. Ikram, M. Yaseen, Chem. Eng. J. 2020, 384, 123271.
- 50X. Ma, S. Velu, J. H. Kim, C. Song, Appl. Catal. B 2005, 56, 137.
- 51Y. Yang, H. Lu, P. Ying, Z. Jiang, C. Li, Carbon 2007, 45, 3042‒3044.
- 52A. J. Hernández-Maldonado, R. T. Yang, J. Am. Chem. Soc. 2004, 126, 992.
- 53J. Xiong, W. Zhu, H. Li, W. Ding, Y. Chao, P. Wu, S. Xun, M. Zhang, H. Li, Green Chem. 2015, 17, 1647.
- 54M. Ghassa, F. Khorashe, Z. Hajjar, S. Soltanali, Energy Fuels 2023, 37, 6490‒6502.
- 55M. Yaseen, S. Ullah, W. Ahmad, S. Subhan, F. Subhan, Fuel 2021, 284, 119102.
- 56X.-L. Sun, Z. Liu, Z.-L. Cheng, J. Hazard. Mater. 2021, 403, 123851.