Characteristics and Performances of Blended Polyethersulfone and Carbon-Based Nanomaterial Membranes: Effect of Nanomaterial Types and Air Exposure
Corresponding Author
Jono Suhartono
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Correspondence: Jono Suhartono ([email protected]), Department of Chemical Engineering, Institut Teknologi Nasional (ITENAS), Jl. PHH. Mustafa No. 23, Bandung, Indonesia, 40124.Search for more papers by this authorDyah Setyo Pertiwi
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Search for more papers by this authorCarlina Noersalim
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Search for more papers by this authorDevi Yulianingsih
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Search for more papers by this authorFalashiva Sofianti
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Search for more papers by this authorAgus Saptoro
Curtin University Malaysia, Department of Chemical Engineering, CDT 250, 98009 Miri, Sarawak, Malaysia
Search for more papers by this authorAchmad Chafidz
Universitas Islam Indonesia, Chemical Engineering Department, 55584 Yogyakarta, Indonesia
Search for more papers by this authorCorresponding Author
Jono Suhartono
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Correspondence: Jono Suhartono ([email protected]), Department of Chemical Engineering, Institut Teknologi Nasional (ITENAS), Jl. PHH. Mustafa No. 23, Bandung, Indonesia, 40124.Search for more papers by this authorDyah Setyo Pertiwi
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Search for more papers by this authorCarlina Noersalim
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Search for more papers by this authorDevi Yulianingsih
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Search for more papers by this authorFalashiva Sofianti
Institut Teknologi Nasional (ITENAS), Department of Chemical Engineering, Jl. PHH. Mustafa No. 23, 40124 Bandung, Indonesia
Search for more papers by this authorAgus Saptoro
Curtin University Malaysia, Department of Chemical Engineering, CDT 250, 98009 Miri, Sarawak, Malaysia
Search for more papers by this authorAchmad Chafidz
Universitas Islam Indonesia, Chemical Engineering Department, 55584 Yogyakarta, Indonesia
Search for more papers by this authorAbstract
Polyethersulfone (PES) is a widely used polymeric material for ultrafiltration or nanofiltration membranes. To enhance membrane permeability, rejection, and antifouling performance, the effect of four different types of carbon-based nanomaterials and air exposures during PES/carbon-based nanomaterial membrane fabrication was evaluated. The carbon-based nanomaterials were pristine carbon nanotubes, oxidized CNTs (CNTs-O), pristine graphene nanoplatelets (GNPs-P), and oxidized graphene nanoplatelets (GNPs-O). The characteristics and performances of pure and blended membranes were investigated based on their permeability, porosity, morphology, and hydrophobicity. Longer air contact time during membrane preparation resulted in lower membrane permeability, hydrophobicity, and porosity. All fabricated membranes tended to have channelled sponge-like structure, and highest permeability was attributed to the PES/GNPs-O membrane.
References
- 1 Y. Manawi, V. Kochkodan, M. A. Hussein, M. A. Khaleel, M. Khraisheh, N. Hilal, Desalination 2016, 391, 69–88. DOI: https://doi.org/10.1016/j.desal.2016.02.015
- 2 R. Nasir, H. Mukhtar, Z. Man, D. F. Mohshim, Chem. Eng. Technol. 2013, 36 (5), 717–727. DOI: https://doi.org/10.1002/ceat.201200734
- 3 X. Wang, M. Feng, Y. Liu, H. Deng, J. Lu, J. Membr. Sci. 2019, 577, 41–50. DOI: https://doi.org/10.1016/j.memsci.2019.01.055
- 4 M. Bassyouni, M. H. Abdel-Aziz, M. Sh. Zoromba, S. M. S. Abdel Hamid, J. Ind. Eng. Chem. 2019, 73, 19–46. DOI: https://doi.org/10.1016/j.jiec.2019.01.045
- 5 I. Ahmed, A. Idris, A. Hussain, Z. A. M. Yusof, M. S. Khan, Chem. Eng. Technol. 2013, 36 (10), 1683–1690. DOI: https://doi.org/10.1002/ceat.201300235
- 6 W. Wang, L. Zhu, B. Shan, C. Xie, C. Liu, F. Cui, G. Li, J. Membr. Sci. 2018, 548, 459–469. DOI: https://doi.org/10.1016/j.memsci.2018.11.046
- 7 M. H. D. A. Farahani, H. Rabiee, V. Vatanpour, J. Water Process Eng. 2019, 27, 47–57. DOI: https://doi.org/10.1016/j.wpe.2018.11.012
- 8 W. Wang, L. Zhu, B. Shan, C. Xie, C. Liu, F. Cui, G. Li, J. Membr. Sci. 2018, 548, 459–469. DOI: https://doi.org/10.1016/j.memsci.2017.11.046
- 9 M. Shaban, A. M. Ashraf, H. AbdAllah, H. M. A. El-Salam, Desalination 2018, 444, 129–141. DOI: https://doi.org/10.1016/j.desal.2018.07.006
- 10 D. S. Wavhal, E. R. Fisher, J. Membr. Sci. 2002, 209 (1), 255–269. DOI: https://doi.org/10.1016/s0376-7388(02)00352-6
- 11 N. Nady, Membranes 2016, 6 (2), 23. DOI: https://doi.org/10.3390/membranes6020023
- 12 F. Li, J. Meng, J. Ye, B. Yang, Q. Tian, C. Deng, Desalination 2014, 344, 422–430. DOI: https://doi.org/10.1016/j.desal.2014.04.011
- 13 M. E. Pasaoglu, S. Guclu, I. Koyuncu, Water Sci. Technol. 2016, 74 (3), 738–748. DOI: https://doi.org/10.2166/wst.2016.252
- 14 E. Celik, H. Park, H. Choi, H. Choi, Water Res. 2011, 45 (1), 274–282. DOI: https://doi.org/10.1016/j.watres.2010.07.060
- 15 Y. Jiang, Q. Zeng, P. Biswas, J. D. Fortner, J. Membr. Sci. 2019, 581, 453–461. DOI: https://doi.org/10.1016/j.memsci.2019.03.056
- 16 M. S. Algamdi, I. H. Alsohaimi, J. Lawler, H. M. Ali, A. M. Aldasari, H. M. A. Hassan, Sep. Purif. Technol. 2019, 223, 17–23. DOI: https://doi.org/10.1016/j.seppur.2019.04.057
- 17 R. Das, Md. E. Ali, S. B. Abd. Hamid, S. Ramakrishna, Z. Z. Chowdhury, Desalination 2014, 336, 97–109. DOI: https://doi.org/10.1016/j.desal.2013.12.026
- 18 J. Suhartono, C. Tizaoui, Sep. Purif. Technol. 2015, 154, 290–300. DOI: https://doi.org/10.1016/j.seppur.2015.09.009
- 19 N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, C. Gao, Desalination 2018, 437, 59–72. DOI: https://doi.org/10.1016/j.desal.2018.02.024
- 20 Ihsanullah, Sep. Purif. Technol. 2019, 209, 307–337. DOI: https://doi.org/10.1016/j.seppur.2018.07.043
- 21 K. Goh, H. E. Karahan, L. Wei, T. H. Bae, A. G. Fane, R. Wang, Y. Chen, Carbon 2016, 109, 694–710. DOI: https://doi.org/10.1016/j.carbon.2016.08.077
- 22
A. Mustafa, A. M. Busyairi, A. F. Ismail, Int. J. Waste Resour.
2012, 2 (1), 22–24. DOI: https://doi.org/10.12777/ijwr.2.1.2012.22-24
10.12777/ijwr.2.1.2012.22-24 Google Scholar
- 23 K. K. Sirkar, N. K. Agarwal, G. P. Rangaiah, J. Appl. Polym. Sci. 1978, 22 (7), 1919–1944. DOI: https://doi.org/10.1002/app.1978.070220714
- 24 I. Soroko, M. Makowski, F. Spill, A. Livingston, J. Membr. Sci. 2011, 381 (1), 163–171. DOI: https://doi.org/10.1016/j.memsci.2011.07.028
- 25 M. B. Thürmer, P. Poletto, M. Marcolin, J. Duarte, M. Zeni, Mater. Res. 2012, 15 (6), 884–890. DOI: https://doi.org/10.1590/s1516-14392012005000115
- 26 Y. Zhao, Z. Xu, M. Shan, C. Min, B. Zhou, Y. Li, B. Li, L. Liu, X. Qian, Sep. Purif. Technol. 2013, 103, 78–83. DOI: https://doi.org/10.1016/j.seppur.2012.10.012
- 27
M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, Dordrecht, The Netherlands
1996.
10.1007/978-94-009-1766-8 Google Scholar
- 28 H. Zhao, S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, J. Membr. Sci. 2014, 450, 249–256. DOI: https://doi.org/10.1016/j.memsci.2013.09.014
- 29 M. Mondal, M. Dutta, S. De, Sep. Purif. Technol. 2017, 188, 155–166. DOI: https://doi.org/10.1016/j.seppur.2017.07.013
- 30
Y. Yuan, T. R. Lee, in Surface Science Techniques (Eds: G. Bracco, B. Holst), Springer, Berlin
2013, 3–34.
10.1007/978-3-642-34243-1_1 Google Scholar
- 31 J. Suhartono, C. Tizaoui, Ozone Sci. Eng. 2018, 40 (1), 64–75. DOI: https://doi.org/10.1080/01919512.2017.1345618
- 32 T. D. Kusworo, Budiyono, D. Ikhsan, N. Rokhati, A. Prasetyaningrum, F. R. Mutiara, N. R. Sofiana, MATEC Web Conf. 2017, 101, 01004. DOI: https://doi.org/10.1051/matecconf/201710101004
- 33 B. Van Der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, Environ. Prog. 2003, 22 (1), 46–56. DOI: https://doi.org/10.1002/ep.67022011
- 34 N. Harruddin, S. M. Saufi, C. K. M. Faizal, A. W. Mohammad, RSC Adv. 2018, 8 (45), 25396–25408. DOI: https://doi.org/10.1039/c8ra03392
- 35 L. Yue, G. Pircheraghi, S. A. Monemian, I. Manas-Zloczower, Carbon 2014, 78, 268–278. DOI: https://doi.org/10.1016/j.carbon.2014.07.003
- 36 C. H. Koo, W. J. Lau, G. S. Lai, S. O. Lai, H. S. Thiam, A. F. Ismail, Chem. Eng. Technol. 2018, 41 (2), 319–326. DOI: https://doi.org/10.1002/ceat.201700357
- 37 C. Athanasekou, A. Sapalidis, I. Katris, E. Savopoulou, K. Beltsios, T. Tsoufis, A. Kaltzoglou, P. Falaras, G. Bounos, M. Antoniou, P. Boutikos, G. E. Romanos, Polym. Eng. Sci. 2019, 59 (S1), E262–E278. DOI: https://doi.org/10.1002/pen.24930
- 38 Y. Zhang, L. Liu, F. Yang, J. Appl. Polym. Sci. 2016, 133 (26), 43605. DOI: https://doi.org/10.1002/app.43597
- 39 J. Xue, S. Wang, X. Han, Y. Wang, X. Hua, J. Li, Chem. Eng. Technol. 2018, 41 (2), 270–277. DOI: https://doi.org/10.1002/ceat.201600709
- 40 G. Han, Z. Chen, L. Cai, Y. Zhang, J. Tian, H. Ma, S. Fang, Chem. Eng. Technol. 2020, 43 (3), 574–581. DOI: https://doi.org/10.1002/ceat.201900149
- 41 E. A. Feijani, A. Tavassoli, H. Mahdavi, H. Molavi, J. Appl. Polym. Sci. 2018, 135 (21), 46271. DOI: https://doi.org/10.1002/app.46271