Heat Transfer Characteristics of CO2 Desorption from N-Methyldiethanolamine Solution in a Microchannel Reactor
Hongchen Liu
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023 Dalian, China
University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
Search for more papers by this authorChaoqun Yao
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023 Dalian, China
Search for more papers by this authorYuchao Zhao
Yantai University, College of Chemistry and Chemical Engineering, 30 Qingquan Road, 264005 Yantai, China
Search for more papers by this authorCorresponding Author
Guangwen Chen
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023 Dalian, China
Correspondence: Guangwen Chen ([email protected]), Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023 Dalian, China.Search for more papers by this authorHongchen Liu
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023 Dalian, China
University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
Search for more papers by this authorChaoqun Yao
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023 Dalian, China
Search for more papers by this authorYuchao Zhao
Yantai University, College of Chemistry and Chemical Engineering, 30 Qingquan Road, 264005 Yantai, China
Search for more papers by this authorCorresponding Author
Guangwen Chen
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023 Dalian, China
Correspondence: Guangwen Chen ([email protected]), Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023 Dalian, China.Search for more papers by this authorAbstract
The heat transfer performance and energy consumption of CO2 desorption from rich N-methyldiethanolamine (MDEA) solution were determined experimentally in a straight microchannel reactor. Nucleate boiling was found to be the dominant heat transfer mechanism in this experiment. The heat transfer coefficients were strongly dependent on the heat flux. The solution flow rate was the most influential factor on the heat flux, followed by desorption temperature, MDEA concentration, and CO2 loading. In addition, an empirical correlation was proposed to predict the experimental heat transfer coefficients.
References
- 1 Climate Change 2014: Synthesis Report (Eds: R. K. Pachauri, L. A. Meyer), IPCC, Geneva 2014.
- 2 G. T. Rochelle, Science 2009, 325 (5948), 1652–1654. DOI: 10.1126/science.1176731
- 3 R. S. Haszeldine, Science 2009, 325 (5948), 1647–1652. DOI: 10.1126/science.1172246
- 4 M. R. M. Abu-Zahra, J. P. M. Niederer, P. H. M. Feron, G. F. Versteeg, Int. J. Greenhouse Gas Control 2007, 1 (2), 135–142. DOI: 10.1016/s1750-5836(07)00032-1
- 5 M. R. M. Abu-Zahra, L. H. J. Schneiders, J. P. M. Niederer, P. H. M. Feron, G. F. Versteeg, Int. J. Greenhouse Gas Control 2007, 1 (1), 37–46. DOI: 10.1016/s1750-5836(06)00007-7
- 6
F. A. Tobiesen, H. F. Svendsen, K. A. Hoff, Int. J. Greenhouse Energy
2005, 2 (2), 201–215. DOI: 10.1081/GE-200058981
10.1081/GE‐200058981 Google Scholar
- 7 G. W. Chen, J. Yue, Q. Yuan, Chin. J. Chem. Eng. 2008, 16 (5), 663–669. DOI: 10.1016/S1004-9541(08)60138-X.
- 8 J. Yue, G. W. Chen, Q. Yuan, L. Luo, Y. Gonthier, Chem. Eng. Sci. 2007, 62 (7), 2096–2108. DOI: 10.1016/j.ces.2006.12.057
- 9 H. S. Cao, G. W. Chen, Q. Yuan, Ind. Eng. Chem. Res. 2009, 48 (9), 4535–4541. DOI: 10.1021/ie801419r
- 10 H. Ganapathy, A. Shooshtari, S. Dessiatoun, M. Ohadi, M. Alshehhi, Chem. Eng. J. 2015, 266, 258–270. DOI: 10.1016/j.cej.2014.12.028
- 11 C. B. Ye, M. H. Dang, C. Q. Yao, G. W. Chen, Q. Yuan, Chem. Eng. J. 2013, 225, 120–127. DOI: 10.1016/j.cej.2013.03.053
- 12 C. B. Ye, G. W. Chen, Q. Yuan, Chin. J. Chem. Eng. 2012, 20 (1), 111–119. DOI: 10.1016/S1004-9541(12)60370-X
- 13
Solvent Extraction and Gas Absorption Using Microchannel Contactors (Eds: W. TeGrotenhuis, R. Cameron, V. Viswanathan, R. Wegeng), Springer, Berlin
2000.
10.1007/978-3-642-59738-1_56 Google Scholar
- 14 S. H. Cypes, J. R. Engstrom, Chem. Eng. J. 2004, 101 (1–3), 49–56. DOI: 10.1016/j.cej.2003.10.014
- 15 T. Nguyen, A. P. Esser-Kahn, Angew. Chem. Int. Ed. 2013, 52 (51), 13731–4. DOI: 10.1002/anie.201306928
- 16 H. Liu, C. Yao, Y. Zhao, G. Chen, Chem. Eng. J. 2017, 307, 776–784. DOI: 10.1016/j.cej.2016.09.010
- 17 K. Balasubramanian, M. Jagirdar, P. Lee, C. Teo, S. Chou, Int. J. Heat Mass Transfer 2013, 66, 655–671. DOI: 10.1016/j.ijheatmasstransfer.2013.07.050
- 18 S. Choi, R. F. Barron, R. Warrington, ASME DSC 1991, 32, 123–134.
- 19 G. Hetsroni, M. Gurevich, A. Mosyak, R. Rozenblit, Int. J. Heat Mass Transfer 2004, 47 (17), 3797–3809. DOI: 10.1016/j.ijheatmasstransfer.2004.03.009
- 20 G. Maranzana, I. Perry, D. Maillet, Int. J. Heat Mass Transfer 2004, 47 (17), 3993–4004. DOI: 10.1016/j.ijheatmasstransfer.2004.04.016
- 21 H. Y. Wu, P. Cheng, Int. J. Heat Mass Transfer 2003, 46 (14), 2547–2556. DOI: 10.1016/s0017-9310(03)00035-8
- 22 A. Koşar, Y. Peles, Int. J. Heat Mass Transfer 2007, 50 (5), 1018–1034. DOI: 10.1016/j.ijheatmasstransfer.2006.07.032
- 23
X. Peng, G. Peterson, B. Wang, Int. J. Heat Mass Transfer
1996, 39 (6), 1257–1264. DOI: 10.1016/0017-9310(95)00204-9
10.1016/0017‐9310(95)00204‐9 Google Scholar
- 24 S. S. Bertsch, E. A. Groll, S. V. Garimella, Int. J. Multiphase Flow 2009, 35 (2), 142–154. DOI: 10.1016/j.ijmultiphaseflow.2008.10.004
- 25 T. Harirchian, S. V. Garimella, Int. J. Heat Mass Transfer 2008, 51 (15), 3724–3735. DOI: 10.1016/j.ijheatmasstransfer.2008.03.013
- 26
A. Feldman, C. Marvillet, M. Lebouche, Int. J. Heat Mass Transfer
2000, 43 (18), 3433–3442. DOI: 10.1016/S0017-9310(99)00203-3
10.1016/S0017‐9310(99)00203‐3 Google Scholar
- 27 D. Steiner, J. Taborek, Heat Transfer Eng. 1992, 13 (2), 43–69. DOI: 10.1080/01457639208939774
- 28
Z. Bao, D. Fletcher, B. Haynes, Int. J. Heat Mass Transfer
2000, 43 (18), 3347–3358. DOI: 10.1016/S0017-9310(99)00379-8
10.1016/S0017‐9310(99)00379‐8 Google Scholar
- 29 D. Aaron, C. Tsouris, Sep. Sci. Technol. 2005, 40 (1–3), 321–348. DOI: 10.1081/ss-200042244