Advanced Operating Strategies to Extend the Applications of Simulated Moving Bed Chromatography
Kyung-Min Kim
Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
KEPCO Research Institute, Creative Future Laboratory, 105 Munji-ro, Yuseong-gu, 34056 Daejeon, Korea
These authors contributed equally.
Search for more papers by this authorJu Weon Lee
Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
These authors contributed equally.
Search for more papers by this authorSunhee Kim
Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
Search for more papers by this authorFrancisco Vitor Santos da Silva
Max Planck Institute for Dynamics of Complex Technical Systems, Physical and Chemical Foundations of Process Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorCorresponding Author
Andreas Seidel-Morgenstern
Max Planck Institute for Dynamics of Complex Technical Systems, Physical and Chemical Foundations of Process Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany
Otto-von-Guericke University, Chair of Chemical Process Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
Correspondence: Andreas Seidel-Morgenstern ([email protected]), Otto-von-Guericke University, Chair of Chemical Process Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany. Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.Search for more papers by this authorCorresponding Author
Chang-Ha Lee
Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
Correspondence: Andreas Seidel-Morgenstern ([email protected]), Otto-von-Guericke University, Chair of Chemical Process Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany. Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.Search for more papers by this authorKyung-Min Kim
Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
KEPCO Research Institute, Creative Future Laboratory, 105 Munji-ro, Yuseong-gu, 34056 Daejeon, Korea
These authors contributed equally.
Search for more papers by this authorJu Weon Lee
Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
These authors contributed equally.
Search for more papers by this authorSunhee Kim
Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
Search for more papers by this authorFrancisco Vitor Santos da Silva
Max Planck Institute for Dynamics of Complex Technical Systems, Physical and Chemical Foundations of Process Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorCorresponding Author
Andreas Seidel-Morgenstern
Max Planck Institute for Dynamics of Complex Technical Systems, Physical and Chemical Foundations of Process Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany
Otto-von-Guericke University, Chair of Chemical Process Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
Correspondence: Andreas Seidel-Morgenstern ([email protected]), Otto-von-Guericke University, Chair of Chemical Process Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany. Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.Search for more papers by this authorCorresponding Author
Chang-Ha Lee
Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
Correspondence: Andreas Seidel-Morgenstern ([email protected]), Otto-von-Guericke University, Chair of Chemical Process Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany. Yonsei University, Department of Chemical and Biomolecular Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.Search for more papers by this authorAbstract
Chromatographic separation with solid stationary and fluid mobile phases is widely used to isolate and purify compounds. One of the most productive improvements in preparative chromatography is the simulated moving bed (SMB) process, which enables continuous feed supply and product removal by periodic operation of a multicolumn to simulate a countercurrent flow between the phases. The SMB process produces high-purity compounds, even with low selectivity, and offers higher productivity and lower eluent consumption than batch chromatography. Recently, intensive efforts have been made to expand the range of applications through the design, modeling, and optimization of the SMB process to produce advanced operating strategies, which are described and evaluated in this review.
References
- 1 D. B. Broughton, C. G. Gerhold, US Patent , 1961. 2 985 589
- 2 D. M. Ruthven, C. B. Ching, Chem. Eng. Sci. 1989, 44 (5), 1011–1038. DOI: 10.1016/0009-2509(89)87002-2
- 3 L. Miller, C. Grill, O. Dapremont, E. Huthmann, M. Juza, J. Chromatogr. A 2003, 1006 (1–2), 267–280. DOI: 10.1016/S0021-9673(03)00782-9
- 4 M. Schulte, J. N. Kinkel, R. M. Nicoud, F. Charton, Chem. Ing. Tech. 1996, 68 (6), 670–683. DOI: 10.1002/cite.330680606
- 5 D. B. Broughton, Chem. Eng. Prog. 1968, 64, 60–65.
- 6 D. B. Broughton, R. W. Neuzil, J. M. Pharis, C. S. Brearley, Chem. Eng. Prog. 1970, 66, 70–75.
- 7 C. B. Ching, B. G. Lim, E. J. D. Lee, S. C. Ng, J. Chromatogr. A 1993, 634 (2), 215–219. DOI: 10.1016/0021-9673(93)83007-F
- 8 R. M. Nicoud, G. Fuchs, P. Adam, M. Bailly, E. Küsters, F. D. Antia, R. Reuille, E. Schmid, Chirality 1993, 5 (4), 267–271. DOI: 10.1002/chir.530050415
- 9 L. S. Pais, J. M. Loureiro, A. E. Rodrigues, AIChE J. 1998, 44 (3), 561–569. DOI: 10.1002/aic.690440307
- 10 M. McCoy, Chem. Eng. News 2000, 78 (25), 17–19. DOI: 10.1021/cen-v078n025.p017
- 11 M. Juza, M. Mazzotti, M. Morbidelli, Trends Biotechnol. 2000, 18 (3), 108–118. DOI: 10.1016/S0167-7799(99)01419-5
- 12 M. Schulte, J. Strube, J. Chromatogr. A 2001, 906 (1–2), 399–416. DOI: 10.1016/S0021-9673(00)00956-0
- 13 Z. Bubnik, V. Pour, A. Gruberova, H. Starhova, A. Hinkova, P. Kadlexc, J. Food Eng. 2004, 61 (4), 509–513. DOI: 10.1016/S0260-8774(03)00221-8
- 14
G. Subramanian, Chiral Separation Techniques: A Practical Approach, 3rd ed., Wiley-VCH, Weinheim
2007.
10.1002/9783527611737 Google Scholar
- 15
G. B. Cox, Preparative Enantioselective Chromatography, Blackwell, Oxford
2005.
10.1002/9780470988428 Google Scholar
- 16 A. Rajendran, G. Parades, M. Mazzotti, J. Chromatogr. A 2009, 1216 (4), 709–738. DOI: 10.1016/j.chroma.2008.10.075
- 17 M. Negawa, F. Shoji, J. Chromatogr. A 1992, 590 (1), 113–117. DOI: 10.1016/0021-9673(92)87011-V
- 18 A. Rodrigues, Simulated Moving Bed Technology, Principles, Design and Process Applications, Butterworth-Heinemann, Waltham, MA 2015.
- 19 A. Seidel-Morgenstern, L. C. Keßler, M. Kaspereit, Chem. Eng. Technol. 2008, 31 (6), 826–837. DOI: 10.1002/ceat.200800081
- 20 P. S. Gomes, A. E. Rodrigues, Chem. Eng. Technol. 2012, 35 (1), 17–34. DOI: 10.1002/ceat.201100281
- 21 J. P. S. Aniceto, C. M. Silva, Sep. Purif. Rev. 2015, 44 (1), 41–73. DOI: 10.1080/15422119.2013.851087
- 22 R. P. V. Faria, A. E. Rodrigues, J. Chromatogr. A 2015, 1421, 82–102. DOI: 10.1016/j.chroma.2015.08.045
- 23 R. M. Nicoud, Ind. Eng. Chem. Res. 2014, 53 (10), 3755–3765. DOI: 10.1021/ie5005866
- 24 Y. Xie, Y. M. Koo, N.-H. L. Wang, Biotechnol. Bioprocess Eng. 2001, 6 (6), 363–375. DOI: 10.1007/BF02932317
- 25 J. Bentley, Y. Kawajiri, AIChE J. 2013, 59 (3), 736–746. DOI: 10.1002/aic.13856
- 26 J. P. S. Aniceto, S. P. Cardoso, C. M. Silva, Comput. Chem. Eng. 2016, 90, 161–170. DOI: 10.1016/j.compchemeng.2016.04.028
- 27 P. Suvarov, A. Kienle, C. Nobre, G. De Weireld, A. V. Wouwer, J. Process Control 2014, 24 (2), 357–367. DOI: 10.1016/j.jprocont.2013.11.001
- 28 A. S. Andrade Neto, A. R. Secchi, M. B. Souza Jr., A. G. Barreto Jr., J. Chromatogr. A 2016, 1470, 42–49. DOI: 10.1016/j.chroma.2016.09.070
- 29 I. B. R. Nogueira, A. M. Ribeiro, M. A. F. Martins, A. E. Rodrigues, H. Koivisto, J. M. Loureiro, J. Chromatogr. A 2017, 1504, 112–123. DOI: 10.1016/j.chroma.2017.04.060
- 30 C. B. Ching, D. M. Ruthven, K. Hidajat, Chem. Eng. Sci. 1985, 40 (8), 1411–1417. DOI: 10.1016/0009-2509(85)80081-6
- 31 G. Guiochon, A. Felinger, D. G. Shirazi, A. M. Katti, Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed., Elsevier, New York 2006.
- 32 H. Schmidt-Traub, M. Schulte, A. Seidel-Morgenstern, Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents, 2nd ed., Wiley-VCH, Weinheim 2012.
- 33
R. M. Nicoud, Chromatographic Processes Modeling, Simulation, and Design, Cambridge University Press, Cambridge
2015.
10.1017/CBO9781139998284 Google Scholar
- 34 G. Storti, M. Masii, S. Carrà, M. Morbidelli, Chem. Eng. Sci. 1989, 44 (6), 1329–1345. DOI: 10.1016/0009-2509(89)85006-7
- 35 M. Mazzotti, G. Storti, M. Morbidelli, J. Chromatogr. A 1997, 769 (1), 3–24. DOI: 10.1016/S0021-9673(97)00048-4
- 36 H. K. Rhee, R. Aris, N. R. Amundson, Philos. Trans. R. Soc., A 1970, 267 (1182), 419–455. DOI: 10.1098/rsta.1970.0050
- 37 H. K. Rhee, R. Aris, N. R. Amundson, First-Order Partial Differential Equations, Vol. 1, Prentice-Hall, Englewood Cliffs, NJ 1986.
- 38 H. K. Rhee, R. Aris, N. R. Amundson, First-Order Partial Differential Equations, Vol. 2, Prentice-Hall, Englewood Cliffs, NJ 1986.
- 39 Z. Ma, N. H. L. Wang, AIChE J. 1997, 43 (10), 2488–2508. DOI: 10.1002/aic.690431012
- 40 D. C. S. Azevedo, A. E. Rodrigues, AIChE J. 1999, 45 (5), 956–966. DOI: 10.1002/aic.690450506
- 41 A. E. Rodrigues, L. S. Pais, Sep. Sci. Technol. 2004, 39 (2), 245–270. DOI: 10.1081/SS-120027557
- 42 G. S. Weedne Jr., N. H. L. Wang, J. Chromatogr. A 2015, 1418, 54–76. DOI: 10.1016/j.chroma.2015.08.042
- 43 G. S. Weedne Jr., N. H. L. Wang, J. Chromatogr. A 2017, 1493, 19–40. DOI: 10.1016/j.chroma.2017.02.038
- 44 K. Hashimoto, M. Yamada, S. Adachi, Y. Shirai, J. Chem. Eng. Jpn. 1989, 22 (4), 432–434. DOI: 10.1252/jcej.22.432
- 45 B. Shen, M. Chen, H. Jiang, Y. Zhao, F. Wei, Sep. Sci. Technol. 2011, 46 (5), 695–701. DOI: 10.1080/01496395.2010.537730
- 46 Y. Zang, P. C. Wankat, Ind. Eng. Chem. Res. 2002, 41 (21), 5283–5289. DOI: 10.1021/ie020052s
- 47 Y. M. Koo, J. W. Lee, J. I. Kim, Korean Patent , 2007. KR 20090039979
- 48 B. Shen, M. Chen, H. Jiang, Y. Zhao, F. Wei, Sep. Sci. Technol. 2011, 46 (5), 695–701. DOI: 10.1080/01496395.2010.537730
- 49 S. Mun, J. Chromatogr. A 2012, 1256, 46–57. DOI: 10.1016/j.chroma.2012.07.091
- 50 R. C. R. Rodrigues, J. M. M. Araujo, M. F. J. Eusebio, J. P. B. Mota, J. Chromatogr. A 2007, 1142 (1), 69–80. DOI: 10.1016/j.chroma.2006.10.044
- 51 R. C. R. Rodrigues, R. J. S. Silva, J. P. B. Mota, J. Chromatogr. A 2010, 1217 (20), 3382–3391. DOI: 10.1016/j.chroma.2010.03.009
- 52 M. M. Kearney, K. L. Hieb, US Patent , 1992. 5 102 533
- 53 E. Kloppenburg, E. D. Gilles, Chem. Eng. Technol. 1999, 22 (10), 813–817. DOI: 10.1002/(SICI)1521-4125(199910)22:10<813::AID-CEAT813>3.0.CO;2-G
- 54 Z. Zhang, M. Mazzotti, M. Morbidelli, J. Chromatogr. A 2003, 1006 (1–2), 87–99. DOI: 10.1016/S0021-9673(03)00781-7
- 55
Z. Zhang, M. Morbidelli, M. Mazzotti, AIChE J.
2004, 50 (3), 625–632. DOI: 10.1002/aic.10056
10.1002/aic.10056 Google Scholar
- 56
L. C. Pais, A. E. Rodrigues, J. Chromatogr. A
2003, 1006 (1–2), 33–44. DOI: 10.1016/S0021-9673(03)00557-0
10.1016/S0021‐9673(03)00557‐0 Google Scholar
- 57
O. Ludemann-Hombourger, R. M. Nicoud, M. Bailly, Sep. Sci. Technol.
2000, 35 (12), 1829–1862. DOI: 10.1081/SS-100100622
10.1081/SS‐100100622 Google Scholar
- 58 O. Ludemann-Hombourger, G. Pigorini, R. M. Nicoud, D. S. Ross, G. Terfloth, J. Chromatogr. A 2002, 947 (1), 59–68. DOI: 10.1016/S0021-9673(01)01568-0
- 59 Z. Zhang, M. Mazzotti, M. Morbidelli, J. Chromatogr. A 2003, 989 (1), 95–108. DOI: 10.1016/S0021-9673(02)01802-2
- 60
Z. Zhang, K. Hidajat, A. K. Ray, M. Morbidelli, AIChE J.
2002, 48 (12), 2800–2816. DOI: 10.1002/aic.690481209
10.1002/aic.690481209 Google Scholar
- 61 A. C. Silva, A. G. Salles, R. F. Perna, C. R. D. Correia, C. C. Santana, Chem. Eng. Technol. 2012, 35 (1), 83–90. DOI: 10.1002/ceat.201100209
- 62 R. Gong, X. Lin, P. Li, J. Yu, A. E. Rodrigues, J. Chromatogr. A 2014, 1363, 242–249. DOI: 10.1016/j.chroma.2014.06.098
- 63 X. Lin, R. Gong, J. Li, P. Li, J. Yu, A. E. Rodrigues, J. Chromatogr A 2016, 1467, 347–355. DOI: 10.1016/j.chroma.2016.08.031
- 64 C. Yao, S. Tang, H.-M. Yao, M. O. Tadé, Y. Xu, Comput. Chem. Eng. 2014, 68, 114–122. DOI: 10.1016/j.compchemeng.2014.05.004
- 65 C. Yao, K. Jing, X. Ling, Y. Lu, S. Tang, Comput. Chem. Eng. 2017, 96, 69–74. DOI: 10.1016/j.compchemeng.2016.10.016
- 66 I. T. Zúñiga, A. V. Wouwer, Comput. Chem. Eng. 2014, 71, 1–10. DOI: 10.1016/j.compchemeng.2014.07.009
- 67 Y. Zang, P. C. Wankat, Ind. Eng. Chem. Res. 2002, 41 (21), 5283–5289. DOI: 10.1021/ie020052s
- 68 S. Mun, J. Chromatogr. A 2014, 1350, 72–82. DOI: 10.1016/j.chroma.2014.05.036
- 69 H. Schramm, M. Kaspereit, A. Kienle, A. Seidel-Morgenstern, J Chromatogr. A 2003, 1006 (1–2), 77–86. DOI: 10.1016/S0021-9673(03)00327-3
- 70 R. Lübke, A. Seidel-Morgenstern, L. Tobiska, Comput. Chem. Eng. 2007, 31 (4), 258–267. DOI: 10.1016/j.compchemeng.2006.06.013
- 71 G. Agrawal, J. Oh, B. Sreedhar, S. Tie, M. E. Donaldson, T. C. Frank, A. K. Schultz, A. S. Bommarius, Y. Kawajiri, J. Chromatogr. A 2014, 1360, 196–208. DOI: 10.1016/j.chroma.2014.07.080
- 72 H. Schramm, A. Kienle, M. Kaspereit, A. Seidel-Morgenstern, Chem. Eng. Sci. 2003, 58 (23–24), 5217–5227. DOI: 10.1016/j.ces.2003.08.015
- 73 Y. Yu, K. R. Wood, Y. A. Liu, Ind. Eng. Chem. Res. 2015, 54, 11576–11591. DOI: 10.1021/acs.iecr.5b02545
- 74 H.-H. Lee, K. M. Kim, C.-H. Lee, AIChE J. 2011, 57 (8), 2036–2053. DOI: 10.1002/aic.12428
- 75 K. M. Kim, C.-H. Lee, J. Chromatogr. A 2013, 1311, 79–89. DOI: 10.1016/j.chroma.2013.08.058
- 76 J.-Y. Song, D. Oh, C.-H. Lee, J. Chromatogr. A 2015, 1403, 104–117. DOI: 10.1016/j.chroma.2015.05.034
- 77 S. Abdelmoumen, L. Muhr, M. Bailly, O. Ludemann-Hombourger, Sep. Sci. Technol. 2006, 41 (12), 2639–2663. DOI: 10.1080/01496390600829992
- 78 L. C. Keßler, A. Seidel-Morgenstern, J. Chromatogr. A 2008, 1207 (1–2), 55–71. DOI: 10.1016/j.chroma.2008.08.022
- 79 S. Li, Y. Kawajiri, J. Raisch, A. Seidel-Morgenstern, J. Chromatogr. A 2010, 1217 (33), 5349–5357. DOI: 10.1016/j.chroma.2010.06.032
- 80 K. M. Kim, H.-H. Lee, C.-H. Lee, Ind. Eng. Chem. Res. 2012, 51 (29), 9835–9849. DOI: 10.1021/ie300446x
- 81 Y. S. Bae, C.-H. Lee, J. Chromatogr. A 2006, 1122, 161–173. DOI: 10.1016/j.chroma.2006.04.040
- 82 C. Park, H. G. Nam, H. J. Hwang, J. H. Kim, S. Mun, Process Biochem. 2014, 49, 324–334. DOI: 10.1016/j.procbio.2013.10.021
- 83
P. S. Gomes, A. E. Rodrigues, Sep. Sci. Technol.
2007, 42 (2), 223–252. DOI: 10.1080/01496390601070125
10.1080/01496390601070125 Google Scholar
- 84 P. S. Gomes, A. E. Rodrigues, Sep. Sci. Technol. 2010, 45 (16), 2259–2272. DOI: 10.1080/01496395.2010.497525
- 85 S. Mun, J. Chromatogr. A 2010, 1217 (42), 6522–6530. DOI: 10.1016/j.chroma.2010.08.049
- 86 K. M. Kim, J.-Y. Song, C.-H. Lee, J. Chromatogr. A 2014, 1340, 79–89. DOI: 10.1016/j.chroma.2014.03.012
- 87 B. Sreedhar, Y. Kawajiri, Chem. Eng. Sci. 2014, 116, 428–441. DOI: 10.1016/j.ces.2014.05.004
- 88 K. M. Kim, J.-Y. Song, C.-H. Lee, Korean J. Chem. Eng. 2016, 33 (3), 1059–1069. DOI: 10.1007/s11814-015-0220-x
- 89 J.-Y. Song, K. M. Kim, C.-H. Lee, J. Chromatogr. A 2016, 1471, 102–117. DOI: 10.1016/j.chroma.2016.10.015
- 90 M. Tanimura, M. Tamura, M. Techima, US Patent , 1991. 5 064 539
- 91 K. Yoritomi, T. Kezuka, M. Moriya, US Patent , 1981. 4 267 054
- 92 F. Lutin, M. Bailly, D. Bar, Desalination 2002, 148 (1–3), 121–124. DOI: 10.1016/S0011-9164(02)00664-1
- 93 S. Katsuo, M. Mazzotti, J. Chromatogr. A 2010, 1217 (8), 1354–1361. DOI: 10.1016/j.chroma.2009.12.065
- 94 S. Katsuo, M. Mazzotti, J. Chromatogr. A 2010, 1217 (18), 3067–3075. DOI: 10.1016/j.chroma.2010.02.083
- 95 S. Jermann, M. Mazzotti, J. Chromatogr. A 2014, 1361, 125–138. DOI: 10.1016/j.chroma.2014.07.101
- 96 S. Jermann, A. Alberti, M. Mazzotti, J. Chromatogr. A 2014, 1364, 107–116. DOI: 10.1016/j.chroma.2014.08.057
- 97 R. M. Nicoud, G. Hotier, M. Perrut, French Patent , 1993. FR2690630
- 98 M. Mazzotti, G. Storti, M. Morbidelli, J. Chromatogr. A 1997, 786 (2), 309–320. DOI: 10.1016/S0021-9673(97)00594-3
- 99
F. Denet, W. Hauck, R. M. Nicoud, O. D. Giovanni, M. Mazzotti, J. N. Jaubert, M. Morbidelli, Ind. Eng. Chem. Res.
2001, 40 (21), 4603–4609. DOI: 10.1021/ie000959v
10.1021/ie000959v Google Scholar
- 100 O. D. Giovanni, M. Mazzotti, M. Morbidelli, F. Denet, W. Hauck, R. M. Nicoud, J. Chromatogr. A 2001, 919 (1), 1–12. DOI: 10.1016/S0021-9673(01)00799-3
- 101
M. Johannssen, S. Peper, A. Depta, J. Biochem. Biophys. Methods
2002, 54 (1–3), 85–102. DOI: 10.1016/S0165-022X(02)00132-X
10.1016/S0165‐022X(02)00132‐X Google Scholar
- 102 A. Rajecdran, S. Peper, M. Johannsen, M. Mazzotti, M. Morbidelli, G. Brunner, J. Chromatogr. A 2005, 1092 (1), 55–64. DOI: 10.1016/j.chroma.2005.02.040
- 103
S. Peper, M. Lübbert, M. Johannsen, G. Brunner, Sep. Sci. Technol.
2002, 37 (11), 2545–2566. DOI: 10.1081/SS-120004452
10.1081/SS‐120004452 Google Scholar
- 104 C. A. M. Cristancho, S. Peper, M. Johannsen, J. Supercrit. Fluids 2012, 66, 129–136. DOI: 10.1016/j.supflu.2012.02.015
- 105 C. H. Lin, H. W. Lin, J. Y. Wu, J. Y. Houng, H. P. Wan, T. Y. Yang, M. T. Liang, J. Supercrit. Fluids 2015, 98, 17–24. DOI: 10.1016/j.supflu.2014.12.025
- 106 T. B. Jensen, T. G. P. Reijns, H. A. H. Billiet, L. A. M. Van der Wielen, J. Chromatogr. A 2000, 873 (2), 149–162. DOI: 10.1016/S0021-9673(99)01352-7
- 107
D. Antos, A. Seidel-Morgenstern, Chem. Eng. Sci.
2001, 56 (23), 6667–6682. DOI: 10.1016/S0009-2509(01)00342-6
10.1016/S0009‐2509(01)00342‐6 Google Scholar
- 108 S. Abel, M. Mazzotti, M. Morbidelli, J. Chromatogr. A 2002, 944 (1–2), 23–39. DOI: 10.1016/S0021-9673(01)01087-1
- 109 G. Ziomek, M. Kaspereit, J. Jeżowski, A. Seidel-Morgenstern, D. Antos, J. Chromatogr. A 2005, 1070 (1–2), 111–124. DOI: 10.1016/j.chroma.2005.02.080
- 110 G. Ziomek, D. Antos, Comput. Chem. Eng. 2005, 29 (7), 1577–1589. DOI: 10.1016/j.compchemeng.2004.12.007
- 111 S. Mun, N. H. L. Wang, Process Biochem. 2009, 43 (12), 1407–1418. DOI: 10.1016/j.procbio.2008.08.011
- 112 F. Wei, M. Li, F. Huang, M. Chen, H. Jiang, Y. Zhao, J. Chromatogr. A 2011, 1218 (20), 2906–2911. DOI: 10.1016/j.chroma.2011.03.001
- 113 H. G. Nam, S. H. Jo, C. Park, S. Mun, Process Biochem. 2012, 47 (3), 401–409. DOI: 10.1016/j.procbio.2011.11.011
- 114 F. Wei, B. S. Shen, M. Chen, Y. Zhao, J. Chromatogr. A 2012, 1225, 99–106. DOI: 10.1016/j.chroma.2011.12.080
- 115 C. Jiang, F. Huang, F. Wei, J. Chromatogr. A 2014, 1334, 87–91. DOI: 10.1016/j.chroma.2014.02.010
- 116
C. Migliorini, M. Wendlinger, M. Mazzotti, M. Morbidelli, Ind. Eng. Chem. Res.
2001, 40 (12), 2606–2617. DOI: 10.1021/ie000825h
10.1021/ie000825h Google Scholar
- 117 J. Houwing, T. B. Jensen, S. H. van Hateren, H. A. H. Billiet, L. A. M. van der Wielen, AIChE J. 2003, 49 (3), 665–674. DOI: 10.1002/aic.690490311
- 118 D. Antos, A. Seidel-Morgenstern, J. Chromatogr. A 2002, 944 (1–2), 77–91. DOI: 10.1016/S0021-9673(01)01365-6
- 119 S. Abel, M. Mazzotti, M. Morbidelli, J. Chromatogr. A 2004, 1026 (1–2), 47–55. DOI: 10.1016/j.chroma.2003.11.054
- 120 N. V. D. Long, J. W. Lee, T.-H. Le, J.-I. Kim, Y.-M. Koo, Korean J. Chem. Eng. 2011, 28, 1110–1119. DOI: 10.1007/s11814-010-0475-1
- 121 J. W. Lee, P. C. Wankat, Chem. Eng. J. 2011, 166 (2), 511–522. DOI: 10.1016/j.cej.2010.11.009
- 122 N. Soepriatna, N. H. L. Wang, P. C. Wankat, Ind. Eng. Chem. Res. 2015, 54 (42), 10419–10433. DOI: 10.1021/acs.iecr.5b01296
- 123 N. Soepriatna, N. H. L. Wang, P. C. Wankat, Ind. Eng. Chem. Res. 2015, 54 (50), 12646–12663. DOI: 10.1021/ie504939z
- 124 Y. Xie, S. Mun, J. Kim, N. H. L. Wang, Biotechnol. Prog. 2002, 18 (6), 1332–1344. DOI: 10.1021/bp025547r
- 125 B.-J. Park, C.-H. Lee, S. Mun, Y.-M. Koo, Process Biochem. 2006, 41 (5), 1072–1082. DOI: 10.1016/j.procbio.2005.11.026
- 126 M. Wellhoefer, W. Sprinzl, R. Hahn, A. Jungbauer, J. Chromatogr. A 2014, 1337, 48–56. DOI: 10.1016/j.chroma.2014.02.016
- 127 F. Steinebach, T. Müller-Späth, M. Morbidelli, Biotechnol. J. 2016, 11 (9), 1126–1141. DOI: 10.1002/biot.201500354
- 128 L. Aumann, G. Stroehlein, M. Morbidelli, Biotechnol. Bioeng. 2007, 98 (5), 1029–1042. DOI: 10.1002/bit.21529
- 129 L. Aumann, M. Morbidelli, Biotechnol. Bioeng. 2007, 98 (5), 1043–1055. DOI: 10.1002/bit.21527
- 130 M. Krättli, F. Steinebach, M. Morbidelli, J. Chromatogr. A 2013, 1293, 51–59. DOI: 10.1016/j.chroma.2013.03.069
- 131 F. Steinebach, N. Ulmer, L. Decker, L. Aumann, M. Morbidelli, J. Chromatogr. A 2017, 1492, 19–26. DOI: 10.1016/j.chroma.2017.02.049
- 132 M. Angarita, T. Müller-Späth, D. Baur, R. Lievrouw, G. Lissens, M. Morbidelli, J. Chromatogr. A 2015, 1389, 85–95. DOI: 10.1016/j.chroma.2015.02.046
- 133 L. C. Keβler, L. Gueorguieva, U. Rinas, A. Seidel-Morgenstern, J. Chromatogr. A 2007, 1176 (1–2), 69–78. DOI: 10.1016/j.chroma.2007.10.087
- 134 C. A. M. Cristancho, F. David, E. Franco-Lara, A. Seidel-Morgenstern, J. Biotechnol. 2013, 163 (2), 233–242. DOI: 10.1016/j.jbiotec.2012.08.022
- 135 C. A. M. Cristancho, A. Seidel-Morgenstern, J. Chromatogr. A 2016, 1434, 29–38. DOI: 10.1016/j.chroma.2016.01.001
- 136 G. Ströhlein, L. Aumann, M. Mazzotti, M. Morbidelli, J. Chromatogr. A 2006, 1126 (1–2), 338–346. DOI: 10.1016/j.chroma.2006.05.011
- 137 C. Jiang, F. Huang, F. Wei, J. Chromatogr. A 2014, 1334, 87–91. DOI: 10.1016/j.chroma.2014.02.010
- 138 T. Masuda, T. Sonobe, F. Matsuda, M. Horie, US Patent , 1993. 5 198 120
- 139 Z. Horváth, E. Horosanskaia, J. W. Lee, H. Lorenz, K. Gilmore, P. H. Seeberger, A. Seidel-Morgenstern, Org. Process Res. Dev. 2015, 19 (6), 624–634. DOI: 10.1021/acs.oprd.5b00048
- 140 S. Jermann, S. Katsuo, M. Mazzotti, Org. Process Res. Dev. 2012, 16 (2), 311–322. DOI: 10.1021/op200239e
- 141 S. Jermann, M. Meijssen, M. Mazzotti, J. Chromatogr. A 2015, 1378, 37–49. DOI: 10.1016/j.chroma.2014.12.011
- 142 R. C. Liang, X. Q. Bao, L. Sung, C. H. Lin, M. T. Liang, Adsorption 2017, 23 (4), 535–549. DOI: 10.1007/s10450-017-9866-5
- 143 S. Mun, N. H. L. Wang, J. Chromatogr. A 2017, 1488, 104–112. DOI: 10.1016/j.chroma.2016.12.052
- 144 F. Wei, B. Shen, M. J. Chen, Y. X. Zhao, Ind. Eng. Chem. Res. 2012, 51 (16), 5805–5812. DOI: 10.1021/ie2024189
- 145 H. Khan, M. Younas, Iran. J. Chem. Chem. Eng. 2011, 30 (2), 101–117.
- 146 H. Khan, M. Younas, Can. J. Chem. Eng. 2011, 89 (6), 1480–1491. DOI: 10.1002/cjce.20485
- 147 J. G. Palacios, M. Kaspereit, G. Ziomek, D. Antos, A. Seidel-Morgenstern, Ind. Eng. Chem. Res. 2009, 48 (24), 11148–11157. DOI: 10.1021/ie900361m
- 148 E. A. B. da Silva, A. E. Rodrigues, Sep. Sci. Technol. 2008, 43 (3), 533–566. DOI: 10.1080/01496390701812491
- 149 S. Mun, J. Chromatogr. A 2013, 1277, 48–57. DOI: 10.1016/j.chroma.2012.12.056
- 150 S. Mun, J. Chromatogr. A 2011, 1218 (44), 8060–8074. DOI: 10.1016/j.chroma.2011.09.015
- 151 A. S. T. Chiang, AIChE J. 1998, 44 (8), 1930–1932. DOI: 10.1002/aic.690440823
- 152 A. Nicolaos, L. Muhr, P. Gotteland, R. M. Nicoud, M. Bailly, J. Chromatogr. A 2001, 908 (1–2), 71–86. DOI: 10.1016/s0021-9673(00)00937-7
- 153 J. K. Kim, Y. F. Zang, P. C. Wankat, Ind. Eng. Chem. Res. 2003, 42 (20), 4849–4860. DOI: 10.1021/ie030373j
- 154 J. S. Hur, P. C. Wankat, Ind. Eng. Chem. Res. 2006, 45 (25), 8713–8722. DOI: 10.1021/ie0513705
- 155 G. Agrawal, Y. Kawajiri, J. Chromatogr. A 2012, 1238, 105–113. DOI: 10.1016/j.chroma.2012.03.064
- 156 J. Nowak, D. Antos, A. Seidel-Morgenstern, J. Chromatogr. A 2012, 1253, 58–70. DOI: 10.1016/j.chroma.2012.06.096
- 157 L. C. Kessler, A. Seidel-Morgenstern, J. Chromatogr. A 2006, 1126 (1–2), 323–337. DOI: 10.1016/j.chroma.2006.05.012
- 158 F. V. S. da Silva, A. Seidel-Morgenstern, J. Chromatogr. A 2016, 1456, 123–136. DOI: 10.1016/j.chroma.2016.05.060
- 159 D. Kiwala, J. Mendrella, D. Antos, A. Seidel-Morgenstern, J. Chromatogr. A 2016, 1453, 19–33. DOI: 10.1016/j.chroma.2016.04.083