Dynamic Membrane Filtration: Formation, Filtration, Cleaning, and Applications
Lucheng Li
Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Huanghe Road, 150001 Harbin, China
Search for more papers by this authorCorresponding Author
Guoren Xu
Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Huanghe Road, 150001 Harbin, China
Correspondence: Guoren Xu ([email protected]), Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Huanghe Road, 150001 Harbin, China.Search for more papers by this authorHuarong Yu
Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Huanghe Road, 150001 Harbin, China
Search for more papers by this authorLucheng Li
Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Huanghe Road, 150001 Harbin, China
Search for more papers by this authorCorresponding Author
Guoren Xu
Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Huanghe Road, 150001 Harbin, China
Correspondence: Guoren Xu ([email protected]), Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Huanghe Road, 150001 Harbin, China.Search for more papers by this authorHuarong Yu
Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Huanghe Road, 150001 Harbin, China
Search for more papers by this authorAbstract
Applications of dynamic membrane (DM) filtration and factors affecting formation, filtration, and cleaning are introduced. DMs have been studied extensively for wastewater treatment in recent years. DM formation methods and mechanisms are explained. Effects of supporting material, deposited material, formation pressure, and pH on the DM formation are discussed in detail. The impacts of operation pressure, aeration intensity, cross-flow velocity, temperature, and other parameters on the DM filtration process are evaluated and different DM cleaning strategies are reviewed. The applications of DMs to treatments of municipal wastewater, surface water, oily water, industrial wastewater, sludge, and microalgae harvesting are discussed. Finally, possible future research directions and some guidelines for DM technology are given.
References
- 1 J. Duan, H. Zhang, J. Wang, F. Yang, Desalin. Water Treat. 2012, 13 (1–3), 393–399. DOI: 10.5004/dwt.2010.677
- 2 J. Lee, B. Choi, K. Ahn, S. K. Maeng, K. Song, Bioprocess Biosyst. Eng. 2012, 35 (8), 1389–1398. DOI: 10.1007/s00449-012-0727-z
- 3 W. Li, Y. Wang, G. Sheng, Y. Gui, L. Yu, T. Xie, H. Yu, Bioresour. Technol. 2012, 122, 22–26. DOI: 10.1016/j.biortech.2012.02.018
- 4 W. Li, Y. Wang, J. Xu, Y. Tong, L. Zhao, H. Peng, G. Sheng, H. Yu, Sep. Purif. Technol. 2012, 89, 107–111. DOI: 10.1016/j.seppur.2012.01.019
- 5 H. Chu, Y. Zhang, X. Zhou, B. Dong, J. Membr. Sci. 2013, 433, 126–134. DOI: 10.1016/j.memsci.2013.01.030
- 6 A. A. Poostchi, M. Bayat, M. Rezaei, E. Amini, M. R. Mehrnia, Desalin. Water Treat. 2015, 55 (1), 17–27. DOI: 10.1080/19443994.2014.911118
- 7 N. Li, Y. Hu, Y. Lu, R. J. Zeng, G. Sheng, Appl. Microbiol. Biotechnol. 2016, 100 (13), 6081–6089. DOI: 10.1007/s00253-016-7455-2
- 8 Z. Yu, K. Wang, H. Wang, Q. Zheng, J. Chen, Desalin. Water Treat. 2016, 57 (29), 13440–13452. DOI: 10.1080/19443994.2015.1028459
- 9 C. Salerno, P. Vergine, G. Berardi, A. Pollice, Bioresour. Technol. 2017, 223, 301–306. DOI: 10.1016/j.biortech.2016.10.054
- 10 A. A. Poostchi, M. R. Mehrnia, F. Rezvani, M. H. Sarrafzadeh, Desalination 2012, 286, 429–435. DOI: 10.1016/j.desal.2011.12.002
- 11 M. T. P. de Amorim, I. R. A. Ramos, Desalination 2006, 192 (1–3), 63–67. DOI: 10.1016/j.desal.2005.10.011
- 12 Y. J. Zhao, Y. Tan, F. S. Wong, A. G. Fane, N. P. Xu, Sep. Purif. Technol. 2005, 44 (3), 212–220. DOI: 10.1016/j.seppur.2005.01.010
- 13 J. Xiong, D. Fu, R. P. Singh, J. Membr. Sci. 2014, 471, 308–318. DOI: 10.1016/j.memsci.2014.08.001
- 14 H. Chu, Y. Zhang, X. Zhou, Y. Zhao, B. Dong, H. Zhang, J. Membr. Sci. 2014, 450, 265–271. DOI: 10.1016/j.memsci.2013.08.045
- 15 W. Fuchs, C. Resch, M. Kernstock, M. Mayer, P. Schoeberl, R. Braun, Water Res. 2005, 39 (5), 803–810. DOI: 10.1016/j.watres.2004.12.001
- 16 Y. Hu, X. C. Wang, W. Tian, H. H. Ngo, R. Chen, J. Membr. Sci. 2016, 498, 20–29. DOI: 10.1016/j.memsci.2015.10.009
- 17 M. E. Ersahin, H. Ozgun, R. K. Dereli, I. Ozturk, K. Roest, J. B. van Lier, Bioresour. Technol. 2012, 122, 196–206. DOI: 10.1016/j.biortech.2012.03.086
- 18
Y. L. Zhang, Y. Y. Zhao, H. Q. Chu, B. Z. Dong, X. F. Zhou, Chin. Sci. Bull.
2014, 59 (3), 247–260. DOI: 10.1007/s11434-013-0048-x
10.1007/s11434‐013‐0048‐x Google Scholar
- 19 P. Meyer, A. Mayer, U. Kulozik, Int. Dairy J. 2015, 51, 75–83. DOI: 10.1016/j.idairyj.2015.07.010
- 20 Y. Pan, W. Wang, W. Wang, T. Wang, RSC Adv. 2015, 5 (108), 89015–89024. DOI: 10.1039/C5RA14572D
- 21 M. E. Ersahin, Y. Tao, H. Ozgun, H. Spanjers, J. B. van Lier, Biotechnol. Bioeng. 2016, 113 (4), 761–771. DOI: 10.1002/bit.25841
- 22 N. Fakhimi, M. R. Mehrnia, Desalin. Water Treat. 2016, 57 (34), 15759–15771. DOI: 10.1080/19443994.2015.1076354
- 23 K. Roebuck, A. Y. Tremblay, J. Membr. Sci. 2016, 514, 143–154. DOI: 10.1016/j.memsci.2016.04.047
- 24 J. Xiong, D. Fu, R. P. Singh, J. J. Ducoste, Sep. Purif. Technol. 2016, 167, 88–96. DOI: 10.1016/j.seppur.2016.04.040
- 25 F. Rezvani, M. R. Mehrnia, A. A. Poostchi, Sep. Purif. Technol. 2014, 124, 124–133. DOI: 10.1016/j.seppur.2014.01.028
- 26 Y. Zhang, Y. Zhao, H. Chu, X. Zhou, B. Dong, Colloids Surf., B 2014, 113, 458–466. DOI: 10.1016/j.colsurfb.2013.09.046
- 27 A. A. Poostchi, M. R. Mehrnia, F. Rezvani, Environ. Technol. 2015, 36 (14), 1751–1758. DOI: 10.1080/09593330.2015.1009496
- 28 H. Liu, Y. Wang, B. Yin, Y. Zhu, B. Fu, H. Liu, Bioresour. Technol. 2016, 218, 92–100. DOI: 10.1016/j.biortech.2016.06.077
- 29 M. Saleem, L. Alibardi, M. C. Lavagnolo, R. Cossu, A. Spagni, J. Environ. Manage. 2016, 180, 459–465. DOI: 10.1016/j.jenvman.2016.05.054
- 30 S. Liang, L. Qu, F. Meng, X. Han, J. Zhang, J. Membr. Sci. 2013, 436, 186–194. DOI: 10.1016/j.memsci.2013.02.021
- 31 C. Xu, X. Wang, X. Dou, B. Gao, Desalin. Water Treat. 2013, 52 (1–3), 102–110. DOI: 10.1080/19443994.2013.781965
- 32 B. Gahleitner, C. Loderer, W. Fuchs, J. Membr. Sci. 2013, 431, 19–27. DOI: 10.1016/j.memsci.2012.12.047
- 33 J. Ma, Z. Wang, X. Zou, J. Feng, Z. Wu, Process Biochem. 2013, 48 (3), 510–516. DOI: 10.1016/j.procbio.2013.02.003
- 34 L. Alibardi, N. Bernava, R. Cossu, A. Spagni, Chem. Eng. J. 2016, 284, 130–138. DOI: 10.1016/j.cej.2015.08.111
- 35 M. E. Ersahin, J. B. Gimenez, H. Ozgun, Y. Tao, H. Spanjers, J. B. van Lier, Chem. Eng. J. 2016, 305, 46–53. DOI: 10.1016/j.cej.2016.02.003
- 36 H. Yu, Q. Wang, Z. Wang, E. Sahinkaya, Y. Li, J. Ma, Z. Wu, PLoS One 2014, 9 (4), e93710. DOI: 10.1371/journal.pone.0093710
- 37 J. Joo, C. Park, G. Han, Chem. Eng. J. 2016, 300, 20–28. DOI: 10.1016/j.cej.2016.04.078
- 38 H. Yu, Z. Wang, Z. Wu, C. Zhu, Sci. Rep. 2016, 6, 20111. DOI: 10.1038/srep20111
- 39 S. Liang, T. Zhao, J. Zhang, F. Sun, C. Liu, L. Song, J. Membr. Sci. 2012, 390–391, 113–120. DOI: 10.1016/j.memsci.2011.11.026
- 40 H. Chu, D. Cao, B. Dong, Z. Qiang, Water Res. 2010, 44 (5), 1573–1579. DOI: 10.1016/j.watres.2009.11.006
- 41 B. Fan, X. Huang, Environ. Sci. Technol. 2002, 36 (23), 5245–5251. DOI: 10.1021/es025789n
- 42 L. Chu, S. Li, Sep. Purif. Technol. 2006, 51 (2), 173–179. DOI: 10.1016/j.seppur.2006.01.009
- 43 D. Lu, W. Cheng, T. Zhang, X. Lu, Q. Liu, J. Jiang, J. Ma, Sep. Purif. Technol. 2016, 165, 1–9. DOI: 10.1016/j.seppur.2016.03.034
- 44 H. Chu, Y. Zhao, Y. Zhang, L. Yang, J. Membr. Sci. 2015, 492, 340–347. DOI: 10.1016/j.memsci.2015.05.069
- 45 T. Yang, B. Qiao, G. Li, Q. Yang, Desalination 2015, 363, 134–143. DOI: 10.1016/j.desal.2015.01.010
- 46 J. Ma, Z. Wang, Y. Xu, Q. Wang, Z. Wu, A. Grasmick, Chem. Eng. J. 2013, 219, 190–199. DOI: 10.1016/j.cej.2012.12.085
- 47 B. Gao, L. Liu, J. Liu, F. Yang, Appl. Catal., B 2013, 138–139, 62–69. DOI: 10.1016/j.apcatb.2013.02.023
- 48 M. Ye, H. Zhang, F. Yang, Desalination 2008, 230 (1–3), 100–112. DOI: 10.1016/j.desal.2007.11.019
- 49 M. Ye, H. Zhang, Q. Wei, H. Lei, F. Yang, X. Zhang, Desalination 2006, 194 (1–3), 108–120. DOI: 10.1016/j.desal.2005.11.005
- 50 Y. Zhao, Y. Tan, F. Wong, A. G. Fane, N. Xu, Desalination 2006, 191 (1–3), 344–350. DOI: 10.1016/j.desal.2005.06.042
- 51 M. H. Al-Malack, A. A. Bukhari, N. S. Abuzaid, J. Membr. Sci. 2004, 243 (1–2), 143–153. DOI: 10.1016/j.memsci.2004.05.032
- 52
M. J. M. M. Noor, F. R. Ahmadun, T. A. Mohamed, S. A. Muyibi, M. B. Pescod, Desalination
2002, 147 (1–3), 263–268. DOI: 10.1016/S0011-9164(02)00548-9
10.1016/S0011‐9164(02)00548‐9 Google Scholar
- 53
M. Altman, R. Semiat, D. Hasson, Desalination
1999, 125 (1–3), 65–75. DOI: 10.1016/S0011-9164(99)00124-1
10.1016/S0011‐9164(99)00124‐1 Google Scholar
- 54
C. C. Chen, B. H. Chiang, J. Membr. Sci.
1998, 143 (1–2), 65–73. DOI: 10.1016/S0376-7388(98)00017-9
10.1016/S0376‐7388(98)00017‐9 Google Scholar
- 55 P. H. Hermans, H. L. Bredée, Recl. Trav. Chim. Pays-Bas 1935, 54 (9), 680–700. DOI: 10.1002/recl.19350540902
- 56 M. Saleem, L. Alibardi, R. Cossu, M. C. Lavagnolo, A. Spagni, Chem. Eng. J. 2017, 312, 136–143. DOI: 10.1016/j.cej.2016.11.123
- 57 Y. Satyawali, M. Balakrishnan, Sep. Purif. Technol. 2008, 63 (2), 278–286. DOI: 10.1016/j.seppur.2008.05.008
- 58 M. E. Ersahin, H. Ozgun, Y. Tao, J. B. van Lier, Water Res. 2014, 48, 420–429. DOI: 10.1016/j.watres.2013.09.054
- 59 M. E. Ersahin, H. Ozgun, J. B. van Lier, Sep. Sci. Technol. 2013, 48 (15), 2263–2269. DOI: 10.1080/01496395.2013.804840
- 60 C. Wang, W. Chen, Q. Hu, M. Ji, X. Gao, Chem. Eng. J. 2015, 264, 462–469. DOI: 10.1016/j.cej.2014.11.132
- 61 C. Xu, B. Gao, B. Cao, D. Cheng, Q. Yue, Water Sci. Technol.: Water Supply 2013, 13 (2), 286. DOI: 10.2166/ws.2013.599
- 62 Z. Yu, K. Wang, H. Wang, Q. Zheng, J. Chen, Desalin. Water Treat. 2015, 57 (29), 13440–13452. DOI: 10.1080/19443994.2015.1028459
- 63 Z. Xie, Z. Wang, Q. Wang, C. Zhu, Z. Wu, Bioresour. Technol. 2014, 161, 29–39. DOI: 10.1016/j.biortech.2014.03.014
- 64
D. Fu, H. Kai, R. P. Singh, J. J. Ducoste, J. Environ. Eng.
2014, 140 (11), 4014035. DOI: 10.1061/(ASCE)EE.1943-7870.0000840
10.1061/(ASCE)EE.1943‐7870.0000840 Google Scholar
- 65 T. Yang, Z. Ma, Q. Yang, Desalination 2011, 270 (1–3), 50–56. DOI: 10.1016/j.desal.2010.11.019
- 66
M. Rumyantsev, A. Shauly, S. G. Yiantsios, D. Hasson, A. J. Karabelas, R. Semiat, Desalination
2000, 131 (1–3), 189–200. DOI: 10.1016/S0011-9164(00)90018-3
10.1016/S0011‐9164(00)90018‐3 Google Scholar
- 67
J. Wang, J. Membr. Sci.
1999, 162 (1–2), 45–55. DOI: 10.1016/S0376-7388(99)00121-0
10.1016/S0376‐7388(99)00121‐0 Google Scholar
- 68
V. M. Correia, S. J. Judd, J. Membr. Sci.
1996, 116 (1), 117–127. DOI: 10.1016/0376-7388(96)00032-4
10.1016/0376‐7388(96)00032‐4 Google Scholar
- 69 S. Kishihara, H. Tamaki, S. Fujii, M. Komoto, J. Membr. Sci. 1989, 41, 103–114. DOI: 10.1016/S0376-7388(00)82394-7
- 70 Y. Zhang, B. Gao, L. Lu, Q. Yue, Q. Wang, Y. Jia, J. Pet. Sci. Eng. 2010, 74 (1–2), 14–19. DOI: 10.1016/j.petrol.2010.08.001
- 71 A. P. Kryvoruchko, I. D. Atamanenko, L. Y. Yurlova, J. Membr. Sci. 2004, 228 (1), 77–81. DOI: 10.1016/j.memsci.2003.09.013
- 72
T. V. Knyazkova, A. A. Kavitskaya, Desalination
2000, 131 (1), 129–136. DOI: 10.1016/S0011-9164(00)90013-4
10.1016/S0011‐9164(00)90013‐4 Google Scholar
- 73
N. Li, Z. Liu, S. Xu, J. Membr. Sci.
2000, 169 (1), 17–28. DOI: 10.1016/S0376-7388(99)00327-0
10.1016/S0376‐7388(99)00327‐0 Google Scholar
- 74
E. Tsapiuk, J. Membr. Sci.
1996, 116 (1), 17–29. DOI: 10.1016/0376-7388(95)00320-7
10.1016/0376‐7388(95)00320‐7 Google Scholar
- 75
R. Jiraratananon, D. Uttapap, C. Tangamornsuksun, J. Membr. Sci.
1997, 129 (1), 135–143. DOI: 10.1016/S0376-7388(97)00046-X
10.1016/S0376‐7388(97)00046‐X Google Scholar
- 76
M. Igawa, M. Senō, H. Takahashi, T. Yamabe, Desalination
1977, 22 (1–3), 281–289. DOI: 10.1016/S0011-9164(00)88384-8
10.1016/S0011‐9164(00)88384‐8 Google Scholar
- 77 K. Hwang, Y. Cheng, Sep. Sci. Technol. 2003, 38 (4), 779–795. DOI: 10.1081/SS-120017626
- 78
T. Ohtani, M. Nakajima, Y. Nawa, A. Watanabe, J. Membr. Sci.
1991, 64 (3), 273–281. DOI: 10.1016/0376-7388(91)80098-Q
10.1016/0376‐7388(91)80098‐Q Google Scholar
- 79 S. I. Nakao, T. Nomura, S. Kimura, A. Watanabe, J. Chem. Eng. Jpn. 1986, 19 (3), 221–226. DOI: 10.1252/jcej.19.221
- 80
C. J. Tien, B. H. Chiang, Process Biochem.
1999, 35 (3–4), 377–383. DOI: 10.1016/S0032-9592(99)00081-3
10.1016/S0032‐9592(99)00081‐3 Google Scholar
- 81
G. R. Groves, C. A. Buckley, J. M. Cox, A. Kirk, C. D. Macmillan, M. J. Simpson, Desalination
1983, 47 (1–3), 305–312. DOI: 10.1016/0011-9164(83)87085-4
10.1016/0011‐9164(83)87085‐4 Google Scholar
- 82
B. Cai, H. Ye, Y. Li, Desalination
2000, 128 (3), 247–256. DOI: 10.1016/S0011-9164(00)00039-4
10.1016/S0011‐9164(00)00039‐4 Google Scholar
- 83 A. K. Turkson, J. A. Mikhlin, M. E. Weber, Sep. Sci. Technol. 1989, 24 (15), 1261–1291. DOI: 10.1080/01496398908050651
- 84 M. Walker, C. J. Banks, S. Heaven, Water Sci. Technol. 2009, 59 (4), 729. DOI: 10.2166/wst.2009.012
- 85 Y. An, Z. Wang, Z. Wu, D. Yang, Q. Zhou, Chem. Eng. J. 2009, 155 (3), 709–715. DOI: 10.1016/j.cej.2009.09.003
- 86 R. Y. Horng, C. Huang, M. C. Chang, H. Shao, B. L. Shiau, Y. J. Hu, Desalination 2009, 245 (1–3), 169–182. DOI: 10.1016/j.desal.2008.06.018
- 87 G. T. Seo, B. H. Moon, Y. M. Park, S. H. Kim, Water Sci. Technol. 2007, 55 (1–2), 51. DOI: 10.2166/wst.2007.006
- 88 X. Ren, H. K. Shon, N. Jang, Y. G. Lee, M. Bae, J. Lee, K. Cho, I. S. Kim, Water Res. 2009, 44 (3), 751–760. DOI: 10.1016/j.watres.2009.10.013
- 89 H. Liu, C. Yang, W. Pu, J. Zhang, Chem. Eng. J. 2009, 148 (2–3), 290–295. DOI: 10.1016/j.cej.2008.08.043
- 90 H. Gong, X. Wang, M. Zheng, Z. Jin, K. Wang, Water Sci. Technol. 2014, 70 (8), 1434–1440. DOI: 10.2166/wst.2014.379
- 91 D. Cao, H. Chu, W. Jin, B. Dong, Desalination 2010, 250 (2), 544–547. DOI: 10.1016/j.desal.2009.09.020
- 92 H. Chu, D. Cao, W. Jin, B. Dong, J. Membr. Sci. 2008, 325 (1), 271–276. DOI: 10.1016/j.memsci.2008.07.040
- 93
M. Al-Malack, J. Membr. Sci.
1996, 121 (1), 59–70. DOI: 10.1016/0376-7388(96)00165-2
10.1016/0376‐7388(96)00165‐2 Google Scholar
- 94
M. H. Al-Malack, G. K. Anderson, J. Membr. Sci.
1996, 112 (2), 287–296. DOI: 10.1016/0376-7388(95)00303-7
10.1016/0376‐7388(95)00303‐7 Google Scholar
- 95 J. Y. Wang, K. S. Chou, C. J. Lee, Sep. Sci. Technol. 1998, 33 (16), 2513–2529. DOI: 10.1080/01496399808545316
- 96 F. Li, J. H. Chen, C. H. Deng, Water SA 2006, 32 (2), 199–203.
- 97
D. Freilich, G. B. Tanny, J. Colloid Interface Sci.
1978, 64 (2), 362–370. DOI: 10.1016/0021-9797(78)90373-9
10.1016/0021‐9797(78)90373‐9 Google Scholar
- 98 L. Alibardi, R. Cossu, M. Saleem, A. Spagni, Bioresour. Technol. 2014, 161, 236–244. DOI: 10.1016/j.biortech.2014.03.045
- 99 H. Chu, Y. Zhang, B. Dong, X. Zhou, D. Cao, Z. Qiang, Z. Yu, H. Wang, Desalin. Water Treat. 2012, 40 (1–3), 84–91. DOI: 10.5004/dwt.2012.2602
- 100 Z. Huang, Y. Qie, Z. Wang, Y. Zhang, W. Zhou, J. Membr. Sci. 2015, 475, 47–56. DOI: 10.1016/j.memsci.2014.09.038
- 101 M. E. Ersahin, Y. Tao, H. Ozgun, J. B. Gimenez, H. Spanjers, J. B. van Lier, J. Membr. Sci. 2017, 526, 387–394. DOI: 10.1016/j.memsci.2016.12.057
- 102 J. Zhang, X. Han, B. Jiang, X. Qiu, B. Gao, Desalin. Water Treat. 2012, 18 (1–3), 212–216. DOI: 10.5004/dwt.2010.1773
- 103 Y. Zhang, S. Xia, F. He, D. Xu, L. Kong, Z. Wu, Desalin. Water Treat. 2012, 37 (1–3), 77–83. DOI: 10.5004/dwt.2012.2478
- 104 N. Xue, J. Xia, X. Huang, Desalin. Water Treat. 2012, 18 (1–3), 302–308. DOI: 10.5004/dwt.2010.1812
- 105 Z. Yu, H. Chu, D. Cao, Y. Ma, B. Dong, Y. Wei, Desalination 2012, 285, 73–82. DOI: 10.1016/j.desal.2011.09.036
- 106 H. Liu, Y. Li, C. Yang, W. Pu, L. He, F. Bo, Bioresour. Technol. 2012, 121, 111–118. DOI: 10.1016/j.biortech.2012.07.016