Ethyl Lactate Synthesis by Catalytic Membranes in a Pervaporation-Assisted Membrane Reactor
Filiz Ugur Nigiz
Kocaeli University, Departments of Chemical Engineering, Engineering Faculty, Umuttepe, 41380 Kocaeli, Turkey
Search for more papers by this authorCorresponding Author
Nilufer Durmaz Hilmioglu
Kocaeli University, Departments of Chemical Engineering, Engineering Faculty, Umuttepe, 41380 Kocaeli, Turkey
Correspondence: Nilufer Durmaz Hilmioglu ([email protected]), Kocaeli University, Departments of Chemical Engineering, Engineering Faculty, Umuttepe, 41380 Kocaeli, Turkey.Search for more papers by this authorFiliz Ugur Nigiz
Kocaeli University, Departments of Chemical Engineering, Engineering Faculty, Umuttepe, 41380 Kocaeli, Turkey
Search for more papers by this authorCorresponding Author
Nilufer Durmaz Hilmioglu
Kocaeli University, Departments of Chemical Engineering, Engineering Faculty, Umuttepe, 41380 Kocaeli, Turkey
Correspondence: Nilufer Durmaz Hilmioglu ([email protected]), Kocaeli University, Departments of Chemical Engineering, Engineering Faculty, Umuttepe, 41380 Kocaeli, Turkey.Search for more papers by this authorAbstract
A poly(styrenesulfonic acid)-carboxymethylcellulose (PSSA-CMC) blend catalytic membrane was prepared for ethyl lactate production in a pervaporation-aided membrane reactor. The effects of PSSA/CMC concentration, initial molar ratio, and temperature on acid conversion were evaluated. Additionally, the separation performance of membrane was investigated as a function of flux and separation factor. Increasing the temperature enhanced lactic acid conversion at constant alcohol:acid ratio.
Supporting Information
Filename | Description |
---|---|
ceat201600620-sup-0001-misc_information.pdf355.6 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 F. Barroso-Muñoz, Chem. Biochem. Eng. Q. 2007, 21, 115–120.
- 2
L. F. Rios, E. L. Martínez, N. D. L. Da Silva, T. S. S. Dantas, R. Maciel, M. R. W. Maciel, Chem. Eng. Trans.
2012, 26, 255–260. DOI: 10.3303/CET1226043
10.3303/CET1226043 Google Scholar
- 3 S. Guo, B. He, J. Li, Q. Zhao, Y. Cheng, Chem. Eng. Technol. 2014, 34, 478–482. DOI: 10.1002/ceat.201300467
- 4 C. S. M. Pereira, V. M. T. M. Silva, A. E. Rodrigues, Chem. Eng. Res. Des. 2013, 92, 2017–2026. DOI: 10.1016/j.cherd.2013.11.015
- 5 A. Vigneault, S. S. E. H. Elnashaie, J. R. Grace, Chem. Eng. Technol. 2012, 35, 1520–1533. DOI: 10.1002/ceat.201200029
- 6 F. Gallucci, E. Fernandez, P. Corengia, M. Van Sint, Chem. Eng. Sci. 2013, 92, 40–66. DOI: 10.1016/j.ces.2013.01.008
- 7
F. Gallucci, A. Basile, F. Hai, in Membranes for Membrane Reactors: Preparation, Optimization and Selection (Eds.: A. Basile, F. Gallucci), John Wiley & Sons, Chichester
2011, 1–61.
10.1002/9780470977569.ch Google Scholar
- 8
J. Radjenovi, M. Marin, M. Ivan, P. Mira, B. Damià, Handb. Environ. Chem.
2008, 5, 37–101. DOI: 10.1007/698_5_093
10.1007/698_5_093 Google Scholar
- 9 A. Basile, in Handbook of Membrane Reactors, Fundamental Materials Science, Design and Optimisation, Woodhead Publishing, Cambridge 2013, 12–27.
- 10 C. W. Lin, Y. F. Huang, A. M. Kannan, J. Power Sources 2007, 171, 340–347. DOI: 10.1016/j.jpowsour.2007.06.145
- 11 W. Long, C. W. Jones, ACS Catal. 2011, 1, 674–681. DOI: 10.1021/cs2001175
- 12
D. N. Schulz, A. O. Patil, ACS Symp. Ser.
1998, 1, 1–14. DOI: 10.1021/bk-1998-0704.ch001
10.1021/bk‐1998‐0704.ch001 Google Scholar
- 13
F. U. Nigiz, N. D. Hilmioglu, Res. Eng. Struct. Mat.
2017, 89–97. DOI: 10.17515/resm2016.45ma0613
10.17515/resm2016.45ma0613 Google Scholar
- 14 G. S. Nyanhongo, E. Nugroho Prasetyo, E. Herrero Acero, G. M. Guebitz, Chem. Eng. Technol. 2012, 35, 1359–1372. DOI: 10.1002/ceat.201100590
- 15 C. C. Yang, S. J. Chiu, S. C. Kuo, Curr. Appl. Phys. 2011, 11, S229–S237. DOI: 10.1016/j.cap.2010.11.043
- 16 C. C. Yang, Int. J. Hydrogen Energy 2011, 36, 4419–4431. DOI: 10.1016/j.ijhydene.2011.01.011
- 17 R. Patel, S. J. Im, Y. T. Ko, J. H. Kim, B. R. Min, J. Ind. Eng. Chem. 2009, 15, 299–303. DOI: 10.1016/j.jiec.2008.12.011
- 18 K. H. Jung, B. Pourdeyhimi, X. Zhang, J. Membr. Sci. 2010, 362, 137–142. DOI: 10.1016/j.memsci.2010.06.031
- 19 P. F. Siril, H. E. Cross, D. R. Brown, J. Mol. Catal. A: Chem. 2008, 279, 63–68. DOI: 10.1016/j.molcata.2007.10.001
- 20 V. Polshettiwar, R. S. Varma, Tetrahedron Lett. 2007, 48, 5649–5652. DOI: 10.1016/j.tetlet.2007.06.038
- 21 Y. S. Ye, J. Rick, B. J. Hwang, Polymers (Basel) 2012, 4, 913–963. DOI: 10.3390/polym4020913
- 22 F. F. Bamoharram, M. M. Heravi, P. Ardalan, T. Ardalan, React. Kinet. Mech. Catal. 2010, 100, 71–78. DOI: 10.1007/s11144-010-0159-1
- 23 P. Delgado, M. T. Sanz, S. Beltrán, Chem. Eng. J. 2007, 126, 111–118. DOI: 10.1016/j.cej.2006.09.004
- 24 D. J. Benedict, J. P. Satish, T. Shih-Perng, Ind. Eng. Chem. Res. 2003, 42, 2282–2291. DOI: 10.1021/ie020850i
- 25 K. Wasewar, S. Patidar, V. K. Agarwal, Desalination 2009, 243, 305–313. DOI: 10.1016/j.desal.2008.04.030
- 26 P. Delgado, M. T. Sanz, B. Sagrario, A. N. Luis, Chem. Eng. J. 2010, 165, 693–700. DOI: 10.1016/j.cej.2010.10.009
- 27 J. Ma, Z. Minhua, Lu. Lianyu, Y. Xin, C. Jing, J. Zhongyi, Chem. Eng. J. 2009, 155, 800–809. DOI: 10.1016/j.cej.2009.07.044
- 28 N. S. Asthana, K. K. Aspi, T. V. Dung, T. L. Carl, J. M. Dennis, Ind. Eng. Chem. Res. 2006, 45, 5251–5257. DOI: 10.1021/ie0513604
- 29 K. Tanaka, Y. Ryuuhei, Y. Cui, K. Hidetoshi, O. Ken-ichi, Chem. Eng. Sci. 2002, 57, 1577–1584. DOI: 10.1016/S0009-2509(02)00033-7
- 30 K. Michalis, M. Maria, N. N. Evrydiki, Bioresource Technol. 2014, 165, 343–349. DOI: 10.1016/j.biortech.2014.03.053
- 31 Y. D. Pierre, J. M. Martin, M. Cecilia, P. R. Javier, Green Chem. 2014, 16, 589–593. DOI: 10.1039/C3GC40766G
- 32 M. Zhang, L. Chen, Z. Jiang, J. Ma, Ind. Eng. Chem. Res. 2015, 54, 6669–6676. DOI: 10.1021/acs.iecr.5b01199
- 33 C. S. M. Pereira, M. T. M. S. Vivian, P. P. Simao, E. R. Alírio, J. Membr. Sci. 2010, 361, 43–55. DOI: 10.1016/j.memsci.2010.06.014
- 34 F. U. Nigiz, N. D. Hilmioglu, React. Kinet. Mech. Catal. 2016, 118, 557–575. DOI: 10.1007/s11144-016-0988-7
- 35 Q. L. Liu, H. F. Chen, J. Membr. Sci. 2002, 196, 171–178. DOI: 10.1016/S0376-7388(01)00543-9
- 36 B. John, Reaction Kinetics and Reactor Design, 2nd ed., Marcel Dekker, New York 2000.
- 37 W. Zhang, W. Qing, N. Chen, Z. Ren, J. Chen, W. Sun, J. Membr. Sci. 2014, 451, 285–292. DOI: 10.1016/j.memsci.2013.10.001
- 38 M. Nasef, H. Saidi, K. M. Dahlan, Chin. J. Polym. Sci. 2010, 28, 761–770. DOI: 10.1007/s10118-010-9138-2
- 39 X. Zhang, Y. Zhao, S. Xu, Y. Yang, J. Liu, Y. Wei, Q. Yang, Nat. Commun. 2014, 5, 3170–3179. DOI: 10.1038/ncomms4170
- 40 S. Semenova, H. Ohya, K. Soontarapa, Desalination 1997, 110, 251–286. DOI: 10.1016/S0011-9164(97)00103-3
- 41 S. C. George, S. Thomas, Polym. Sci. 2001, 26, 985–1017. DOI: 10.1016/S0079-6700(00)00036-8
- 42 K. S. Bankole, G. A. Aurand, A. A. Gary, Res. J. Appl. Sci. Eng. Technol. 2014, 7, 4671–4684.