Methods for the Trace Oxygen Removal from Methane-Rich Gas Streams
Tim Peppel
Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
Search for more papers by this authorDominik Seeburg
Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
Search for more papers by this authorGerhard Fulda
Medical Biology and Electron Microscopy Centre, University Medicine, Strempelstrasse 14, 18057 Rostock Germany.
Search for more papers by this authorMarkus Kraus
Department of Environmental Engineering, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
Search for more papers by this authorUlf Trommler
Department of Environmental Engineering, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
Search for more papers by this authorUlf Roland
Department of Environmental Engineering, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
Search for more papers by this authorCorresponding Author
Sebastian Wohlrab
Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.Search for more papers by this authorTim Peppel
Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
Search for more papers by this authorDominik Seeburg
Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
Search for more papers by this authorGerhard Fulda
Medical Biology and Electron Microscopy Centre, University Medicine, Strempelstrasse 14, 18057 Rostock Germany.
Search for more papers by this authorMarkus Kraus
Department of Environmental Engineering, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
Search for more papers by this authorUlf Trommler
Department of Environmental Engineering, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
Search for more papers by this authorUlf Roland
Department of Environmental Engineering, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
Search for more papers by this authorCorresponding Author
Sebastian Wohlrab
Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.Search for more papers by this authorAbstract
Oxygen removal to very low residual contents in methane-rich gas streams and carbon dioxide as co-component (simulated biogas) was achieved via three different methods at various temperatures, namely, by reduction with hydrogen admixtures on Pt/γ-Al2O3 catalysts, by oxygen absorption affinity of YBaCo4O7+δ, and by the catalytic reaction with methane on both the materials, respectively. The three methods have characteristic advantages and disadvantages which are discussed in the context of existing methods for gas treatments focused on oxygen removal. Finally, the advantage of dielectric radio-frequency heating on the powdered functional materials is suggested as alternative to conventional routes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ceat_201600171_sm_miscellaneous_information.pdf296 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
D. Deublein, A. Steinhauser, in Biogas from Waste and Renewable Resources, Wiley-VCH Verlag, Weinheim 2010, 85–95.
10.1002/9783527632794.ch8 Google Scholar
- 2 L. Deng, M.-B. Hägg, Int. J. Greenhouse Gas Control 2010, 4, 638–646. DOI: 10.1016/j.ijggc.2009.12.013
- 3 E. Ryckebosch, M. Drouillon, H. Vervaeren, Biomass Bioenergy 2011, 35, 1633–1645. DOI: 10.1016/j.biombioe.2011.02.033
- 4 EASEE-gas, Vol. 2005-001/02, 2005.
- 5 J.-S. Moon, K.-K. Park, J.-H. Kim, G. Seo, Appl. Catal., A 2000, 201, 81–89. DOI: 10.1016/S0926-860X(00)00423-3
- 6 K. A. Kobe, W. L. Gooding, Ind. Eng. Chem. 1935, 27, 331–333. DOI: 10.1021/ie50303a020
- 7 X.-S. Chai, L.-G. Danielsson, Anal. Chim. Acta 1996, 332, 31–38. DOI: 10.1016/0003-2670(96)00220-6
- 8 J. A. Almquist, E. D. Crittenden, Ind. Eng. Chem. 1926, 18, 866–867. DOI: 10.1021/ie50200a034
- 9 J. Jin, C.-W. Tsang, B. Xu, C. Liang, Catal. Lett. 2014, 144, 2052–2064. DOI: 10.1007/s10562-014-1366-6
- 10 W. Koeppel, F. Ortloff, R. Erler, F. Graf, GWF Gas/Erdgas 2012, 153, 162–171.
- 11 T. Li, P. Yu, Y. Luo, J. Appl. Polym. Sci. 2014, 131, 40430/40431–40430/40438. DOI: 10.1002/app.40430
- 12 J. G. Weisend, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York 2000.
- 13 T. Paryjczak, W. K. Jozwiak, J. Goralski, Przem. Chem. 1987, 66, 294–295.
- 14 R. Erler, H. Krause, T. Raabe, GWF Gas/Erdgas 2013, 154, 854–856.
- 15 P. M. D. Collins, Platinum Met. Rev. 1986, 30, 141–146.
- 16 T. F. Garetto, C. R. Apesteguia, Catal. Today 2000, 62, 189–199. DOI: 10.1016/S0920-5861(00)00420-X
- 17 M. Hoffmann, S. Kreft, G. Georgi, G. Fulda, M.-M. Pohl, D. Seeburg, C. Berger-Karin, E. V. Kondratenko, S. Wohlrab, Appl. Catal., B 2015, 179, 313–320. DOI: 10.1016/j.apcatb.2015.05.028
- 18 M. Karppinen, H. Yamauchi, S. Otani, T. Fujita, T. Motohashi, Y. H. Huang, M. Valkeapää, H. Fjellvåg, Chem. Mater. 2006, 18, 490–494. DOI: 10.1021/cm0523081
- 19 Y. Jia, H. Jiang, M. Valkeapää, H. Yamauchi, M. Karppinen, E. I. Kauppinen, J. Am. Chem. Soc. 2009, 131, 4880–4883. DOI: 10.1021/ja809745k
- 20 H. Hao, J. Cui, C. Chen, L. Pan, J. Hu, X. Hu, Solid State Ionics 2006, 177, 631–637. DOI: 10.1016/j.ssi.2006.01.030
- 21
U. Roland, F. Holzer, U. Trommler, C. Hoyer, C. Rabe, M. Kraus, J. Schneider, F. D. Kopinke, Procedia Eng. 2012, 42, 161–164. DOI: 10.1016/j.proeng.2012.07.406
10.1016/j.proeng.2012.07.406 Google Scholar
- 22 U. Roland, M. Kraus, F. Holzer, U. Trommler, F.-D. Kopinke, Appl. Catal., A 2014, 474, 244–249. DOI: 10.1016/j.apcata.2013.05.013
- 23 G. P. Roussy, J. A. Pearce, Foundations and Industrial Applications of Microwave and Radio Frequency Fields: Physical and Chemical Processes, Wiley VCH, Chichester 1995.
- 24 M. Valldor, M. Andersson, Solid State Sci. 2002, 4, 923–931. DOI: 10.1016/S1293-2558(02)01342-0
- 25 M. Kraus, F.-D. Kopinke, U. Roland, Phys. Chem. Chem. Phys. 2011, 13, 4119–4125. DOI: 10.1039/C0CP02264K
- 26 U. Roland, C. P. Renschen, D. Lippik, F. Stallmach, F. Holzer, Sens. Lett. 2003, 1, 93–98. DOI: 10.1166/sl.2003.002
- 27 Z. Li, G. B. Hoflund, J. Nat. Gas Chem. 2003, 12, 153–160.
- 28 J. H. Lee, D. L. Trimm, Fuel Process. Technol. 1995, 42, 339–359. DOI: 10.1016/0378-3820(94)00091-7
- 29 F. Ortloff, J. Bohnau, F. Graf, T. Kolb, Appl. Catal., B 2016, 182, 375–384. DOI: 10.1016/j.apcatb.2015.09.025
- 30 Z. B. Rui, J. J. Ding, L. N. Fang, Y. S. Lin, Y. D. Li, Fuel 2012, 94, 191–196. DOI: 10.1016/j.fuel.2011.10.073
- 31 O. Parkkima, M. Karppinen, Eur. J. Inorg. Chem. 2014, 2014, 4056–4067. DOI: 10.1002/ejic.201402135
- 32 B. C. Enger, R. Lødeng, A. Holmen, Appl. Catal., A 2008, 346, 1–27. DOI: 10.1016/j.apcata.2008.05.018
- 33 L. V. Mattos, E. Rodino, D. E. Resasco, F. B. Passos, F. B. Noronha, Fuel Process. Technol. 2003, 83, 147–161. DOI: 10.1016/S0378-3820(03)00063-8
- 34 X. Zhang, C. S. M. Lee, D. M. P. Mingos, D. O. Hayward, Catal. Lett. 2003, 88, 129–139.
- 35 Y. Ji, W. Li, H. Xu, Y. Chen, React. Kinet. Catal. Lett. 2001, 73, 27–32.
- 36 M. M. V. M. Souza, M. Schmal, Appl. Catal., A 2003, 255, 83–92. DOI: 10.1016/S0926-860X(03)00646-X
- 37 G. A. Mills, F. W. Steffgen, Catal. Rev. 1974, 8, 159–210. DOI: 10.1080/01614947408071860
- 38 W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 2011, 40, 3703–3727. DOI: 10.1039/c1cs15008a
- 39 G. R. Trotter, Z. Rhodes, GAS – Newpoint Gas Brochures 2009, 41–44.
- 40 T. Eriksson, Y. Kiros, J. Cleaner Prod. 2014, 76, 174–179. DOI: 10.1016/j.jclepro.2014.04.024
- 41 A. W. Petersson, A. Wellinger, IEA Bioenergy Technical Brochures 2009, 20.
- 42 Z. Liu, L. Wang, X. Kong, P. Li, J. Yu, A. E. Rodrigues, Ind. Eng. Chem. Res. 2012, 51, 7355–7363. DOI: 10.1021/ie3005308
- 43 L. C. Yang, US patent US 4,337,071 1982.
- 44 T. Li, P. Yu, Y. Luo, J. Appl. Polym. Sci. 2015, 132, 41350/41351–41350/41359. DOI: 10.1002/app.41350
- 45 Y. Wei, Q. Liao, Z. Li, H. Wang, A. Feldhoff, J. Caro, AIChE J. 2014, 60, 3587–3595. DOI: 10.1002/aic.14540
- 46 Y. M. Kostrikin, Teploenergetika (Moscow, Russ. Fed.) 1957, 4, 70–73.
- 47 S. Kikuchi, K. Honda, S. Kim, Bull. Chem. Soc. Jpn. 1954, 27, 65–68. DOI: 10.1246/bcsj.27.65
- 48 U. Simon, M. E. Franke, Microporous Mesoporous Mater. 2000, 41, 1–36. DOI: 10.1016/S1387-1811(00)00291-2
- 49 G. Huon, T. Simpson, F. Holzer, G. Maini, F. Will, F. D. Kopinke, U. Roland, Chem. Eng. Technol. 2012, 35, 1534–1544. DOI: 10.1002/ceat.201200027
- 50 U. Roland, F. Holzer, M. Kraus, U. Trommler, F.-D. Kopinke, Chem. Eng. Technol. 2011, 34, 1652–1659. DOI: 10.1002/ceat.201100227
- 51 B. Höhlig, D. Schmidt, V. Mechtcherine, S. Hempel, C. Schröfl, U. Trommler, U. Roland, Constr. Build. Mater. 2015, 81, 24–34. DOI: 10.1016/j.conbuildmat.2015.02.004