Mechanochemical Activation of Argon Oxygen Decarburization Slags for Improved Mineral Carbonation
Luka Ceyssens
Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Search for more papers by this authorNina Miladinović
Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Search for more papers by this authorGiuseppe Granata
Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Sustainable Materials Processing and Recycling (SeMPeR), Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001 Belgium
Search for more papers by this authorCorresponding Author
Tom Van Gerven
Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
E-mail: [email protected]
Search for more papers by this authorLuka Ceyssens
Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Search for more papers by this authorNina Miladinović
Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Search for more papers by this authorGiuseppe Granata
Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Sustainable Materials Processing and Recycling (SeMPeR), Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001 Belgium
Search for more papers by this authorCorresponding Author
Tom Van Gerven
Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
E-mail: [email protected]
Search for more papers by this authorAbstract
Inspired by the growing need for carbon mitigation strategies, this work investigates mechanochemical activation of argon oxygen decarburization (AOD) slag for CO2 sequestration. It explores three process modes: concurrent, sequential, and staged planetary ball milling and carbonation. Results showed carbonation uptake reached 70 % of the theoretical maximum with ball milling (0.39 g CO2/g AOD slag) versus 0.17 g CO2/g AOD slag without ball milling. The concurrent process resulted in the fastest rate and uptake. Particle agglomeration was confirmed via particle size analysis and electron microscopy, and non-reactive mineral phases were identified through quantitative X-ray diffraction, explaining incomplete carbonation conversion.
Supporting Information
Filename | Description |
---|---|
ceat12004-sup-0001-SuppMat.docx840.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. J. R. Nunes, Environments 2023, 10 (4), 66. DOI: https://doi.org/10.3390/environments10040066
- 2V. Masson-Delmotte, H.-O. Pörtner, J. Skea, P. Zhai, D. Roberts, P. R. Shukla, A. Pirani, R. Pidcock, Y. Chen, E. Lonnoy, W. Moufouma-Okia, S. Connors, X. Zhou, T. Maycock, M. Tignor, C. Péan, J. B. Robin Matthews, M. I. Gomis, T. Waterfield, An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press, Cambridge 2018.
- 3S. A. Rackley, Carbon Capture Storage, 2nd ed., (Ed: S. A. Rackley), Butterworth-Heinemann, Boston 2017.
- 4W. J. J. Huijgen, R. N. J. Comans, Carbon Dioxide Sequestration by Mineral Carbonation: Literature Review Update 2003–2004, Energy Research Centre of the Netherlands, Petten, The Netherlands 2003.
- 5J. Kim, B. K. Sovacool, M. Bazilian, S. Griffiths, J. Lee, M. Yang, J. Lee, Energy Res. Soc. Sci. 2022, 89, 102565. DOI: https://doi.org/10.1016/j.erss.2022.102565
- 6 World Steel Association, Fact Sheet: Steel Industry Co-Products, World Steel Association, Brussels 2021. https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf
- 7C. Thomas, J. Rosales, J. A. Polanco, F. Agrela, New Trends in Eco-Efficient and Recycled Concrete (Eds: J. Brito, F. Agrela), Woodhead Publishing, Cambridge 2019.
10.1016/B978-0-08-102480-5.00007-5 Google Scholar
- 8L. Kriskova, M. Eroli, R. I. Iacobescu, S. Onisei, F. Vecchiocattivi, Y. Pontikes, J. Am. Ceram. Soc. 2018, 101 (4), 1727–1736. DOI: https://doi.org/10.1111/jace.15306
- 9V. A. Nunes, P. H. R. Borges, Constr. Build. Mater. 2021, 281, 122605. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122605
- 10G. Sheng, C. Li, S. Jin, Q. Bai, Minerals 2023, 13 (7), 869. DOI: https://doi.org/10.3390/min13070869
- 11M. Simoni, W. Reiter, J. Suer, L. Di Sante, F. Cirilli, F. Praolini, M. Mosconi, M. Guzzon, E. Malfa, D. Algermissen, J. Rieger, Metals 2024, 14 (2), 233. DOI: https://doi.org/10.3390/met14020233
- 12L. Holappa, M. Kekkonen, A. Jokilaakso, J. Koskinen, J. Sustain. Metall. 2021, 7 (3), 806–817. DOI: https://doi.org/10.1007/s40831-021-00392-w
- 13F. Kukurugya, P. Nielsen, L. Horckmans, Minerals 2020, 10 (10), 906. DOI: https://doi.org/10.3390/min10100906
- 14M. Reuter, Y. Xiao, U. Boin, 7th Int. Conf. on Molten Slags, Fluxes and Salts, South African Institute of Mining and Metallurgy, Johannesburg 2004.
- 15H. Shen, E. Forssberg, Waste Manage 2003, 23 (10), 933–949. DOI: https://doi.org/10.1016/S0956-053X(02)00164-2
- 16N. Å. I. Andersson, A. Tilliander, L. T. I. Jonsson, P. G. Jönsson, Ironmaking Steelmaking 2013, 40 (5), 390–397. DOI: https://doi.org/10.1179/1743281212Y.0000000060
- 17N. Lundkvist, P. Ni, M. Iguchi, A. Tilliander, P. G. Jönsson, Steel Res. Int. 2018, 89 (6), 1700536. DOI: https://doi.org/10.1002/srin.201700536
- 18M. Bodor, R. M. Santos, L. Kriskova, J. Elsen, M. Vlad, T. Van Gerven, Eur. J. Mineral. 2013, 25, 533–549. DOI: https://doi.org/10.1127/0935-1221/2013/0025-2300
- 19D. Durinck, F. Engström, S. Arnout, J. Heulens, P. T. Jones, B. Björkman, B. Blanpain, P. Wollants, Resour. Conserv. Recycl. 2008, 52 (10), 1121–1131. DOI: https://doi.org/10.1016/j.resconrec.2008.07.001
- 20H. Hajiha, M. Sain, Biofiber Reinforcements In Composite Materials (Eds: O. Faruk, M. Sain), Woodhead Publishing, Cambridge 2015.
10.1533/9781782421276.4.525 Google Scholar
- 21J. Li, B. Liu, Y. Zeng, Z. Wang, Chemosphere 2017, 167, 360–366. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.020
- 22X. Ke, V. A. Baki, L. Skevi, J. CO2 Util. 2023, 68, 102367. DOI: https://doi.org/10.1016/j.jcou.2022.102367
- 23G. Mucsi, S. Kumar, B. Csőke, R. Kumar, Z. Molnár, Á. Rácz, F. Mádai, Á. Debreczeni, Int. J. Miner. Process. 2015, 143, 50–58. DOI: https://doi.org/10.1016/j.minpro.2015.08.010
- 24M. Senna, Int. J. Inorg. Mater. 2001, 3 (6), 509–514. DOI: https://doi.org/10.1016/S1466-6049(01)00060-5
- 25G. Yao, Q. Liu, J. Wang, P. Wu, X. Lyu, J. Clean. Prod. 2019, 217, 12–21. DOI: https://doi.org/10.1016/j.jclepro.2019.01.175
- 26S. Maruthupandian, A. Chaliasou, A. Kanellopoulos, Constr. Build. Mater. 2021, 312, 125333. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125333
- 27R. Baciocchi, G. Costa, E. Di Bartolomeo, A. Polettini, R. Pomi, Waste Biomass Valorization 2010, 1, 467–477. DOI: https://doi.org/10.1007/s12649-010-9047-1
- 28R. M. Santos, J. Van Bouwel, E. Vandevelde, G. Mertens, J. Elsen, T. Van Gerven, Int. J. Greenhouse Gas Control. 2013, 17, 32–45. DOI: https://doi.org/10.1016/j.ijggc.2013.04.004
- 29M. Salman, Ö. Cizer, Y. Pontikes, R. M. Santos, R. Snellings, L. Vandewalle, B. Blanpain, K. Van Balen, Chem. Eng. J. 2014, 246, 39–52. DOI: https://doi.org/10.1016/j.cej.2014.02.051
- 30M.-J. Tao, Y.-J. Wang, J.-G. Li, Y.-N. Zeng, S.-H. Liu, S. Qin, Processes 2021, 9, 2266. DOI: https://doi.org/10.3390/pr9122266
- 31A. de Schutter, L. Ceyssens, G. Granata, T. Van Gerven, J. Sustain. Metall. 2024, 10 (3), 1759–1773. DOI: https://doi.org/10.1007/s40831-024-00895-2
10.1007/s40831-024-00895-2 Google Scholar
- 32S. Wang, M. Wang, F. Liu, Q. Song, Y. Deng, W. Ye, J. Ni, X. Si, C. Wang, Materials 2024, 17 (9), 2066. DOI: https://doi.org/10.3390/ma17092066
- 33M. Bodor, R. Santos, T. Van Gerven, M. Vlad, Cent. Eur. J. Eng. 2013, 3, 566–584. DOI: https://doi.org/10.2478/s13531-013-0115-8
- 34S. Maruhashi, T. Yamauchi, M. Kinugasa, K. Yamada, H. Azuma, T. Hiyama, N. Nishimae, Transactions ISIJ, Vol. 25, Akita University, Akita, Japan 1985.
- 35G. Tarsoly, M. Óvári, Gy. Záray, Spectrochim. Acta Part B At. Spectrosc. 2010, 65 (4), 287–290. DOI: https://doi.org/10.1016/j.sab.2010.02.019
- 36Y.-J. Wang, Y.-N. Zeng, J.-G. Li, Y.-Z. Zhang, Y.-J. Zhang, Q.-Z. Zhao, J. Clean. Prod. 2020, 256, 120377. DOI: https://doi.org/10.1016/j.jclepro.2020.120377
- 37L. Kriskova, Y. Pontikes, Ö. Cizer, G. Mertens, W. Veulemans, D. Geysen, P. T. Jones, L. Vandewalle, K. Van Balen, B. Blanpain, Cem. Concr. Res. 2012, 42 (6), 778–788. DOI: https://doi.org/10.1016/j.cemconres.2012.02.016
- 38J. Bo, Y. Zhang, Y. Zhang, React. Kinet. Mech. Catal. 2017, 122, 819–838. DOI: https://doi.org/10.1007/s11144-017-1230-y
- 39S. Teir, R. Kuusik, C.-J. Fogelholm, R. Zevenhoven, Int. J. Miner. Process. 2007, 85, 1–15. DOI: https://doi.org/10.1016/j.minpro.2007.08.007
- 40C. Woodall, N. McQueen, H. Pilorgé, J. Wilcox, Greenhouse Gases Sci. Technol. 2019, 9, 1096–1113. DOI: https://doi.org/10.1002/ghg.1940
- 41Y. Zhang, R. A. Dawe, Chem. Geol. 2000, 163 (1), 129–138. DOI: https://doi.org/10.1016/S0009-2541(99)00097-2
- 42J. D. Rodriguez-Blanco, S. Shaw, L. G. Benning, Nanoscale 2011, 3 (1), 265–271. DOI: https://doi.org/10.1039/C0NR00589D
- 43N. Mehta, J. Gaëtan, P. Giura, T. Azaïs, K. Benzerara, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 278, 121262. DOI: https://doi.org/10.1016/j.saa.2022.121262
- 44L. A. Zemnukhova, A. E. Panasenko, A. P. Artem'yanov, E. A. Tsoy, BioResources 2015, 10, 3713–3723. DOI: https://doi.org/10.15376/biores.10.2.3713-3723
- 45Y. E. Chai, Q. R. S. Miller, H. T. Schaef, D. Barpaga, R. Bakhshoodeh, M. Bodor, T. Van Gerven, R. M. Santos, J. Supercrit. Fluids 2021, 171, 105191. DOI: https://doi.org/10.1016/j.supflu.2021.105191
- 46D. Y. Chung, S. K. R. Adapa, A. G. Stack, J. Weber, L. M. Anovitz, Single Crystal Periclase Hydration Mechanism and Hydration-induced Fracturing, GOLDSCHMIDT, Chicago, IL 2024.
10.46427/gold2024.23732 Google Scholar
- 47R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Ed: R. C. Ropp), Elsevier, Amsterdam 2013.
10.1016/B978-0-444-59550-8.00003-X Google Scholar
- 48L. Li, T. Chen, X. Gao, L. Peng, Constr. Build. Mater. 2024, 436, 136959. DOI: https://doi.org/10.1016/j.conbuildmat.2024.136959
- 49Z. Liu, P. Van den Heede, C. Zhang, X. Shi, L. Wang, J. Li, Y. Yao, B. Lothenbach, N. De Belie, Cem. Concr. Res. 2023, 169, 107161. DOI: https://doi.org/10.1016/j.cemconres.2023.107161