Control Strategies for Enhanced Biogas Production from Chicken Manure
Dr. Ahmer Ali Siyal
Universiti Teknologi PETRONAS, HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Dr. Rashid Shamsuddin
Universiti Teknologi PETRONAS, HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, 32610 Seri Iskandar, Perak, Malaysia
Correspondence: Dr. Rashid Shamsuddin ([email protected]), HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.Search for more papers by this authorProf. Masaharu Komiyama
Universiti Teknologi PETRONAS, HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorM. Devendran Manogaran
Universiti Teknologi PETRONAS, HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorDr. Totok Soehartanto
Institut Teknologi Sepuluh Nopember Surabaya, Jurusan Teknik Fisika, FTI, J. Arief Rahman Hakim, 60111 Surabaya, Indonesia
Search for more papers by this authorDr. Ahmer Ali Siyal
Universiti Teknologi PETRONAS, HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Dr. Rashid Shamsuddin
Universiti Teknologi PETRONAS, HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, 32610 Seri Iskandar, Perak, Malaysia
Correspondence: Dr. Rashid Shamsuddin ([email protected]), HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.Search for more papers by this authorProf. Masaharu Komiyama
Universiti Teknologi PETRONAS, HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorM. Devendran Manogaran
Universiti Teknologi PETRONAS, HICoE Centre for Biofuel and Biochemical Research (CBBR), Department of Chemical Engineering, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorDr. Totok Soehartanto
Institut Teknologi Sepuluh Nopember Surabaya, Jurusan Teknik Fisika, FTI, J. Arief Rahman Hakim, 60111 Surabaya, Indonesia
Search for more papers by this authorAbstract
The control strategies adopted in formulation and anaerobic digestion (AD) process of chicken manure (CM) for the control and enhancement of biogas production are reviewed. The existing limitations and future challenges in the production of biogas from AD of CM are briefly discussed. The control strategy adopted for formulation is pretreatment of CM (physical, chemical, biological, and thermal) while strategies for AD include selection of optimal parameters (pH, C/N ratio, organic loading rate (OLR), and temperature), co-AD with other substrates, and addition of supporting materials. The pretreatment of CM, selection of optimal parameters, Co-AD of CM with other substrates, and addition of supporting materials overall enhance biogas and methane production due to increase of hydrolysis and C/N and decrease of ammonia inhibition, CO2 and H2S contents. The implementation of developed control strategies in continuous plants, development of new strategies, and use of supporting materials in combinations of two or three for better performance are the future challenges in the AD of CM. The control strategies had a significant impact on the efficient use of CM and improved biogas and methane production.
References
- 1 N. Bhatnagar, D. Ryan, R. Murphy, A. M. Enright, Renewable Sustainable Energy Rev. 2022, 154, 111884. DOI: https://doi.org/10.1016/j.rser.2021.111884
- 2 M. H. Khoshgoftar Manesh, A. Rezazadeh, S. Kabiri, Renewable Energy 2020, 159, 87–106. DOI: https://doi.org/10.1016/j.renene.2020.05.173
- 3 H. A. Kazem, Renewable Sustainable Energy Rev. 2011, 15 (8), 3465–3469. DOI: https://doi.org/10.1016/j.rser.2011.05.015
- 4 M. R. Atelge, D. Krisa, G. Kumar, C. Eskicioglu, D. D. Nguyen, S. W. Chang, A. E. Atabani, A. H. Al-Muhtaseb, S. Unalan, Waste Biomass Valorization 2020, 11 (3), 1019–1040. DOI: https://doi.org/10.1007/s12649-018-00546-0
- 5 E. Lindkvist, M. Karlsson, J. Cleaner Prod. 2018, 174, 1588–1597. DOI: https://doi.org/10.1016/j.jclepro.2017.10.317
- 6
A. Benato, A. Macor, A. Rossetti, Energy Procedia
2017, 126, 398–405. DOI: https://doi.org/10.1016/j.egypro.2017.08.278
10.1016/j.egypro.2017.08.278 Google Scholar
- 7
M. D. Manogaran, M. R. Shamsuddin, M. H. M. Yusoff, M. Lay, AIP Conf. Proc.
2022, 2610 (1), 040005. DOI: https://doi.org/10.1063/5.0099555
10.1063/5.0099555 Google Scholar
- 8 P. E. Group, Big Chicken: Pollution and Industrial Poultry Production in America, The Pew Charitable Trust, Washington, DC 2011.
- 9 C. Yangin-Gomec, I. Ozturk, Energy Convers. Manage. 2013, 71, 92–100. DOI: https://doi.org/10.1016/j.enconman.2013.03.020
- 10
Y. A. Reyes, E. L. Barrera, K.-K. Cheng, J. Environ. Chem. Eng.
2021, 9 (1), 104695. DOI: https://doi.org/10.1016/j.jece.2020.104695
10.1016/j.jece.2020.104695 Google Scholar
- 11 T. Ngo, E. Shahsavari, K. Shah, A. Surapaneni, A. S. Ball, Fuel 2022, 316, 123374. DOI: https://doi.org/10.1016/j.fuel.2022.123374
- 12 W. Fuchs, X. Wang, W. Gabauer, M. Ortner, Z. Li, Renewable Sustainable Energy Rev. 2018, 97, 186–199. DOI: https://doi.org/10.1016/j.rser.2018.08.038
- 13 Y. Shapovalov, S. Zhadan, G. Bochmann, A. Salyuk, V. Nykyforov, Appl. Sci. 2020, 10 (21), 7825. DOI: https://doi.org/10.3390/app10217825
- 14 T. Chowdhury, H. Chowdhury, N. Hossain, A. Ahmed, M. S. Hossen, P. Chowdhury, M. Thirugnanasambandam, R. Saidur, J. Cleaner Prod. 2020, 272, 122818. DOI: https://doi.org/10.1016/j.jclepro.2020.122818
- 15 E. M. M. Esteves, A. M. N. Herrera, V. P. P. Esteves, C. D. R. V. Morgado, J. Cleaner Prod. 2019, 219, 411–423. DOI: https://doi.org/10.1016/j.jclepro.2019.02.091
- 16 A. Auer, N. H. Vande Burgt, F. Abram, G. Barry, O. Fenton, B. K. Markey, S. Nolan, K. Richards, D. Bolton, T. De Waal, S. V. Gordon, V. O'Flaherty, P. Whyte, A. Zintl, J. Sci. Food Agric. 2017, 97 (3), 719–723. DOI: https://doi.org/10.1002/jsfa.8005
- 17 V. A. Vavilin, B. Fernandez, J. Palatsi, X. Flotats, Waste Manage. 2008, 28 (6), 939–951. DOI: https://doi.org/10.1016/j.wasman.2007.03.028
- 18 Brock Biology of Microorganisms (Eds: M. T. Madigan, J. M. Martinko, J. Parker), 11th ed., Pearson Prentice Hall, Upper Saddle River, NJ 2006.
- 19 L. Metcalf, H. P. Eddy, G. Tchobanoglous, Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd ed., McGraw-Hill, New York 1991.
- 20 F. G. Pohland, S. Ghosh, Environ. Lett. 1971, 1 (4), 255–266. DOI: https://doi.org/10.1080/00139307109434990
- 21 B. Demirel, O. Yenigün, J. Chem. Technol. Biotechnol. 2002, 77 (7), 743–755. DOI: https://doi.org/10.1002/jctb.630
- 22 Y. Li, S. Y. Park, J. Zhu, Renewable Sustainable Energy Rev. 2011, 15 (1), 821–826. DOI: https://doi.org/10.1016/j.rser.2010.07.042
- 23 L. A. Fdéz.-Güelfo, C. Álvarez-Gallego, D. Sales Márquez, L. I. Romero García, Bioresour. Technol. 2010, 101 (23), 9031–9039. DOI: https://doi.org/10.1016/j.biortech.2010.07.021
- 24 A. Isha, T. C. D' Silva, P. M. V. Subbarao, R. Chandra, V. K. Vijay, Bioresour. Technol. 2021, 337, 125331. DOI: https://doi.org/10.1016/j.biortech.2021.125331
- 25 C. Beausang, K. McDonnell, F. Murphy, Sci. Total Environ. 2020, 735, 139494. DOI: https://doi.org/10.1016/j.scitotenv.2020.139494
- 26 A. Bayrakdar, R. Molaey, R. Ö. Sürmeli, E. Sahinkaya, B. Çalli, Int. Biodeterior. Biodegrad. 2017, 119, 205–210. DOI: https://doi.org/10.1016/j.ibiod.2016.10.058
- 27 M. D. Manogaran, M. Hakimi, M. H. N. Basheer Ahmad, R. Shamsuddin, J. W. Lim, M. A. M. Hassan, N. T. J. S. Sahrin, Sustainability 2023, 15 (7), 5813. DOI: https://doi.org/10.3390/su15075813
- 28
S. A. M. Johari, A. Aqsha, M. R. Shamsudin, M. K. Lam, N. Osman, M. Tijani, in Manure Technology and Sustainable Development (Eds: M. Jawaid, A. Khan), Springer, Berlin
2023, 145–182.
10.1007/978-981-19-4120-7_6 Google Scholar
- 29 Q. Niu, W. Qiao, H. Qiang, T. Hojo, Y.-Y. Li, Bioresour. Technol. 2013, 137, 358–367. DOI: https://doi.org/10.1016/j.biortech.2013.03.080
- 30 A. Hassanein, S. Lansing, R. Tikekar, Bioresour. Technol. 2019, 275, 200–206. DOI: https://doi.org/10.1016/j.biortech.2018.12.048
- 31 H. Li, F. Tan, L. Ke, D. Xia, Y. Wang, N. He, Y. Zheng, Q. Li, Chem. Eng. J. 2016, 287, 329–336. DOI: https://doi.org/10.1016/j.cej.2015.11.003
- 32 H. I. Owamah, M. I. Alfa, S. O. Dahunsi, Renewable Energy 2014, 68, 366–371. DOI: https://doi.org/10.1016/j.renene.2014.02.006
- 33 W. Qiao, X. Yan, J. Ye, Y. Sun, W. Wang, Z. Zhang, Renewable Energy 2011, 36 (12), 3313–3318. DOI: https://doi.org/10.1016/j.renene.2011.05.002
- 34 K. Li, R. Liu, C. Sun, Bioresour. Technol. 2015, 198, 133–140. DOI: https://doi.org/10.1016/j.biortech.2015.08.151
- 35 B. P. Kelleher, J. J. Leahy, A. M. Henihan, T. F. O'Dwyer, D. Sutton, M. J. Leahy, Bioresour. Technol. 2002, 83 (1), 27–36. DOI: https://doi.org/10.1016/S0960-8524(01)00133-X
- 36
G. R. Anupoju, S. Ahuja, B. Gandu, K. Sandhya, K. Kuruti, V. S. Yerramsetti, in Advances in Bioprocess Technology (Ed: P. Ravindra), Springer, Berlin
2015, 133–147.
10.1007/978-3-319-17915-5_8 Google Scholar
- 37 H. Nie, H. F. Jacobi, K. Strach, C. Xu, H. Zhou, J. Liebetrau, Bioresour. Technol. 2015, 178, 238–246. DOI: https://doi.org/10.1016/j.biortech.2014.09.029
- 38 D. Lynch, A. M. Henihan, B. Bowen, D. Lynch, K. McDonnell, W. Kwapinski, J. J. Leahy, Biomass Bioenergy 2013, 49, 197–204. DOI: https://doi.org/10.1016/j.biombioe.2012.12.009
- 39 X. Shen, G. Huang, Z. Yang, L. Han, Appl. Energy 2015, 160, 108–119. DOI: https://doi.org/10.1016/j.apenergy.2015.09.034
- 40
G. Bujoczek, J. Oleszkiewicz, R. Sparling, S. Cenkowski, J. Agric. Eng. Res.
2000, 76 (1), 51–60. DOI: https://doi.org/10.1006/jaer.2000.0529
10.1006/jaer.2000.0529 Google Scholar
- 41 A. R. Webb, F. R. Hawkes, Agric. Wastes 1985, 14 (2), 135–156. DOI: https://doi.org/10.1016/S0141-4607(85)80025-1
- 42 Y. Chen, J. J. Cheng, K. S. Creamer, Bioresour. Technol. 2008, 99 (10), 4044–4064. DOI: https://doi.org/10.1016/j.biortech.2007.01.057
- 43 E. Salminen, J. Rintala, Bioresour. Technol. 2002, 83 (1), 13–26. DOI: https://doi.org/10.1016/S0960-8524(01)00199-7
- 44 Q. Niu, K. Kubota, W. Qiao, Z. Jing, Y. Zhang, L. Yu-You, J. Chem. Technol. Biotechnol. 2015, 90 (12), 2161–2169. DOI: https://doi.org/10.1002/jctb.4527
- 45 R. Nakakubo, H. B. Møller, A. M. Nielsen, J. Matsuda, Environ. Eng. Sci. 2008, 25 (10), 1487–1496. DOI: https://doi.org/10.1089/ees.2007.0282
- 46 S. Sung, T. Liu, Chemosphere 2003, 53 (1), 43–52. DOI: https://doi.org/10.1016/S0045-6535(03)00434-X
- 47 P. N. Hobson, B. G. Shaw, Water Res. 1976, 10 (10), 849–852. DOI: https://doi.org/10.1016/0043-1354(76)90018-X
- 48 P. L. McCarty, Anaerobic Waste Treatment Fundamentals, Public Works, Vol. 95, 1964, 107–112.
- 49 I. Sinkiewicz, A. Śliwińska, H. Staroszczyk, I. Kołodziejska, Waste Biomass Valorization 2017, 8 (4), 1043–1048. DOI: https://doi.org/10.1007/s12649-016-9678-y
- 50 G. F. Parkin, N. A. Lynch, W.-C. Kuo, E. L. Van Keuren, S. K. Bhattacharya, Res. J. Water Pollut. Control Fed. 1990, 62 (6), 780–788.
- 51 A. P. Annachhatre, S. Suktrakoolvait, Water Environ. Res. 2001, 73 (1), 118–126. DOI: https://doi.org/10.2175/106143001X138778
- 52
M. H. Gerardi, The Microbiology of Anaerobic Digesters, 1st ed., John Wiley & Sons, New York
2003.
10.1002/0471468967 Google Scholar
- 53 R. Chamy, C. León, E. Vivanco, P. Poirrier, C. Ramos, Water Sci. Technol. 2012, 65 (1), 53–59. DOI: https://doi.org/10.2166/wst.2011.714
- 54 M. Wang, X. Sun, P. Li, L. Yin, D. Liu, Y. Zhang, W. Li, G. Zheng, Bioresour. Technol. 2014, 164, 309–314. DOI: https://doi.org/10.1016/j.biortech.2014.04.077
- 55 K. Li, R. Liu, S. Cui, Q. Yu, R. Ma, Renewable Energy 2018, 118, 335–342. DOI: https://doi.org/10.1016/j.renene.2017.11.023
- 56 S. Zhao, W. Chen, W. Luo, H. Fang, H. Lv, R. Liu, Q. Niu, Bioresour. Technol. 2021, 321, 124429. DOI: https://doi.org/10.1016/j.biortech.2020.124429
- 57 Y. Li, R. Zhang, Y. He, C. Zhang, X. Liu, C. Chen, G. Liu, Bioresour. Technol. 2014, 156, 342–347. DOI: https://doi.org/10.1016/j.biortech.2014.01.054
- 58 J. Shen, C. Zhao, Y. Liu, R. Zhang, G. Liu, C. Chen, Energy Convers. Manage. 2019, 198, 110535. DOI: https://doi.org/10.1016/j.enconman.2018.06.099
- 59 Y. Li, R. Zhang, X. Liu, C. Chen, X. Xiao, L. Feng, Y. He, G. Liu, Energy Fuels 2013, 27 (4), 2085–2091. DOI: https://doi.org/10.1021/ef400117f
- 60 L. Liu, T. Zhang, H. Wan, Y. Chen, X. Wang, G. Yang, G. Ren, Energy Convers. Manage. 2015, 97, 132–139. DOI: https://doi.org/10.1016/j.enconman.2015.03.049
- 61 R. Ö. Sürmeli, A. Bayrakdar, B. Çalli, Water Sci. Technol. 2017, 75 (12), 2811–2817. DOI: https://doi.org/10.2166/wst.2017.116
- 62 W. Zhang, Q. Lang, Z. Pan, Y. Jiang, J. Liebetrau, M. Nelles, H. Dong, R. Dong, Waste Manage. 2017, 64, 340–347. DOI: https://doi.org/10.1016/j.wasman.2017.03.034
- 63 B. Zhang, P.-J. He, F. Lü, L.-M. Shao, P. Wang, Water Res. 2007, 41 (19), 4468–4478. DOI: https://doi.org/10.1016/j.watres.2007.06.061
- 64 C. González-Fernández, C. León-Cofreces, P. A. García-Encina, Bioresour. Technol. 2008, 99 (18), 8710–8714. DOI: https://doi.org/10.1016/j.biortech.2008.04.020
- 65 P. Alvira, M. J. Negro, M. Ballesteros, Bioresour. Technol. 2011, 102 (6), 4552–4558. DOI: https://doi.org/10.1016/j.biortech.2010.12.112
- 66 M. E. Montingelli, S. Tedesco, A. G. Olabi, Renewable Sustainable Energy Rev. 2015, 43, 961–972. DOI: https://doi.org/10.1016/j.rser.2014.11.052
- 67 T. Böjti, K. L. Kovács, B. Kakuk, R. Wirth, G. Rákhely, Z. Bagi, Anaerobe 2017, 46, 138–145. DOI: https://doi.org/10.1016/j.anaerobe.2017.03.017
- 68 L. Zhang, K.-C. Loh, J. Zhang, Chem. Eng. J. 2019, 372, 815–824. DOI: https://doi.org/10.1016/j.cej.2019.04.207
- 69 B. Chen, Y. Shao, M. Shi, L. Ji, Q. He, S. Yan, Biochem. Eng. J. 2021, 175, 108135. DOI: https://doi.org/10.1016/j.bej.2021.108135
- 70 C. J. Busato, C. Da Ros, R. Pellay, P. Barbierato, P. Pavan, Renewable Energy 2020, 145, 1647–1657. DOI: https://doi.org/10.1016/j.renene.2019.07.088
- 71 K. Fakkaew, C. Polprasert, Bioresour. Technol. Rep. 2021, 14, 100647. DOI: https://doi.org/10.1016/j.biteb.2021.100647
- 72 M. Rubežius, R. Bleizgys, K. Venslauskas, K. Navickas, Biomass Bioenergy 2020, 142, 105815. DOI: https://doi.org/10.1016/j.biombioe.2020.105815
- 73 M. A. Kucuker, B. Demirel, T. T. Onay, J. Mater. Cycles Waste Manage. 2020, 22 (5), 1521–1528. DOI: https://doi.org/10.1007/s10163-020-01039-w
- 74 B. Schumacher, H. Wedwitschka, S. Weinrich, J. Mühlenberg, D. Gallegos, K. Oehmichen, J. Liebetrau, Renewable Energy 2019, 143, 1554–1565. DOI: https://doi.org/10.1016/j.renene.2019.04.163
- 75 C. S. Raju, S. Sutaryo, A. J. Ward, H. B. Møller, Environ. Technol. 2013, 34 (2), 239–244. DOI: https://doi.org/10.1080/09593330.2012.689482
- 76 D.-M. Yin, W. Qiao, C. Negri, F. Adani, R. Fan, R.-J. Dong, Bioresour. Technol. 2019, 287, 121470. DOI: https://doi.org/10.1016/j.biortech.2019.121470
- 77 D.-M. Yin, M. J. Taherzadeh, M. Lin, M.-M. Jiang, W. Qiao, R.-J. Dong, Bioresour. Technol. 2020, 310, 123470. DOI: https://doi.org/10.1016/j.biortech.2020.123470
- 78 I. Rodriguez-Verde, L. Regueiro, J. M. Lema, M. Carballa, Waste Manage. 2018, 71, 521–531. DOI: https://doi.org/10.1016/j.wasman.2017.11.002
- 79 S. Jain, S. Jain, I. T. Wolf, J. Lee, Y. W. Tong, Renewable Sustainable Energy Rev. 2015, 52, 142–154. DOI: https://doi.org/10.1016/j.rser.2015.07.091
- 80 C. Mao, Y. Feng, X. Wang, G. Ren, Renewable Sustainable Energy Rev. 2015, 45, 540–555. DOI: https://doi.org/10.1016/j.rser.2015.02.032
- 81 N. Duan, D. Zhang, C. Lin, Y. Zhang, L. Zhao, H. Liu, Z. Liu, J. Environ. Manage. 2019, 231, 646–652. DOI: https://doi.org/10.1016/j.jenvman.2018.10.062
- 82 R. M. W. Ferguson, F. Coulon, R. Villa, Water Res. 2016, 100, 348–356. DOI: https://doi.org/10.1016/j.watres.2016.05.009
- 83 F. Shen, H. Li, X. Wu, Y. Wang, Q. Zhang, Bioresour. Technol. 2018, 250, 155–162. DOI: https://doi.org/10.1016/j.biortech.2017.11.037
- 84 R. Xu, K. Zhang, P. Liu, A. Khan, J. Xiong, F. Tian, X. Li, Bioresour. Technol. 2018, 247, 1119–1127. DOI: https://doi.org/10.1016/j.biortech.2017.09.095
- 85 S. M. Wandera, M. Westerholm, W. Qiao, D. Yin, M. Jiang, R. Dong, Bioresour. Technol. 2019, 272, 180–187. DOI: https://doi.org/10.1016/j.biortech.2018.10.023
- 86
A. Mahdy, S. Bi, Y. Song, W. Qiao, R. Dong, Bioresour. Technol. Rep.
2020, 9, 100359. DOI: https://doi.org/10.1016/j.biteb.2019.100359
10.1016/j.biteb.2019.100359 Google Scholar
- 87 M. Hassan, C. Zhao, W. Ding, Energy 2020, 198, 117370. DOI: https://doi.org/10.1016/j.energy.2020.117370
- 88 S. Bi, W. Qiao, L. Xiong, M. Ricci, F. Adani, R. Dong, Renewable Energy 2019, 139, 242–250. DOI: https://doi.org/10.1016/j.renene.2019.02.083
- 89 A. Babaee, J. Shayegan, A. Roshani, J. Environ. Health Sci. Eng. 2013, 11 (1), 15. DOI: https://doi.org/10.1186/2052-336X-11-15
- 90 Ş. Yılmaz, T. Şahan, Biomass Bioenergy 2020, 138, 105601. DOI: https://doi.org/10.1016/j.biombioe.2020.105601
- 91 X. Wang, G. Yang, F. Li, Y. Feng, G. Ren, Waste Manage. Res. 2013, 31 (1), 60–66. DOI: https://doi.org/10.1177/0734242X12468197
- 92
S. K. Nuhu, J. A. Gyang, J. J. Kwarbak, Cleaner Eng. Technol.
2021, 5, 100298. DOI: https://doi.org/10.1016/j.clet.2021.100298
10.1016/j.clet.2021.100298 Google Scholar
- 93 S. O. Dahunsi, S. Oranusi, V. E. Efeovbokhan, Bioresour. Technol. 2017, 241, 454–464. DOI: https://doi.org/10.1016/j.biortech.2017.05.152
- 94 X. Wang, G. Yang, Y. Feng, G. Ren, X. Han, Bioresour. Technol. 2012, 120, 78–83. DOI: https://doi.org/10.1016/j.biortech.2012.06.058
- 95 L. Sillero, R. Solera, M. Perez, Fuel 2022, 321, 124104. DOI: https://doi.org/10.1016/j.fuel.2022.124104
- 96 S. O. Dahunsi, T. M. A. Olayanju, A. T. Adesulu-Dahunsi, Chem. Data Collect. 2019, 20, 100192. DOI: https://doi.org/10.1016/j.cdc.2019.100192
- 97 M. Hassan, W. Ding, Z. Shi, S. Zhao, Bioresour. Technol. 2016, 211, 534–541. DOI: https://doi.org/10.1016/j.biortech.2016.03.148
- 98 Y. Li, R. Zhang, C. Chen, G. Liu, Y. He, X. Liu, Bioresour. Technol. 2013, 149, 406–412. DOI: https://doi.org/10.1016/j.biortech.2013.09.091
- 99 F. Ameen, J. Ranjitha, N. Ahsan, V. Shankar, Fuel 2021, 306, 121746. DOI: https://doi.org/10.1016/j.fuel.2021.121746
- 100 F. Abouelenien, Y. Namba, M. R. Kosseva, N. Nishio, Y. Nakashimada, Bioresour. Technol. 2014, 159, 80–87. DOI: https://doi.org/10.1016/j.biortech.2014.02.050
- 101
I. Mahmoud, M. Hassan, S. Mostafa Aboelenin, M. M. Soliman, H. F. Attia, K. A. Metwally, H. M. Salem, A. M. El-Tahan, M. T. El-Saadony, R. Khalaphallah, Saudi J. Biol. Sci.
2022. DOI: https://doi.org/10.1016/j.sjbs.2022.01.016
10.1016/j.sjbs.2022.01.016 Google Scholar
- 102 Y. Wei, Y. Gao, H. Yuan, Y. Chang, X. Li, Sci. Total Environ. 2022, 815, 152499. DOI: https://doi.org/10.1016/j.scitotenv.2021.152499
- 103
J. P. J. Aseniero, E. M. Opiso, M. H. T. Banda, C. B. Tabelin, SN Appl. Sci.
2018, 1 (1), 35. DOI: https://doi.org/10.1007/s42452-018-0045-4
10.1007/s42452-018-0045-4 Google Scholar
- 104 I. A. Fotidis, P. G. Kougias, I. D. Zaganas, T. A. Kotsopoulos, G. G. Martzopoulos, Environ. Technol. 2014, 35 (10), 1219–1225. DOI: https://doi.org/10.1080/09593330.2013.865083
- 105 S. Arif, R. Liaquat, M. Adil, Renewable Sustainable Energy Rev. 2018, 97, 354–366. DOI: https://doi.org/10.1016/j.rser.2018.08.039
- 106 N. Adu-Gyamfi, S. R. Ravella, P. J. Hobbs, Bioresour. Technol. 2012, 120, 248–255. DOI: https://doi.org/10.1016/j.biortech.2012.06.042
- 107 C. Tada, Y. Yang, T. Hanaoka, A. Sonoda, K. Ooi, S. Sawayama, Bioresour. Technol. 2005, 96 (4), 459–464. DOI: https://doi.org/10.1016/j.biortech.2004.05.025
- 108 Yadvika, Santosh, T. R. Sreekrishnan, S. Kohli, V. Rana, Bioresour. Technol. 2004, 95 (1), 1–10. DOI: https://doi.org/10.1016/j.biortech.2004.02.010
- 109 M. Luna-delRisco, K. Orupõld, H.-C. Dubourguier, J. Hazard. Mater. 2011, 189 (1), 603–608. DOI: https://doi.org/10.1016/j.jhazmat.2011.02.085
- 110 M. S. Romero-Güiza, J. Vila, J. Mata-Alvarez, J. M. Chimenos, S. Astals, Renewable Sustainable Energy Rev. 2016, 58, 1486–1499. DOI: https://doi.org/10.1016/j.rser.2015.12.094
- 111 N. Bhatnagar, D. Ryan, R. Murphy, A.-M. Enright, Energies 2020, 13 (13), 3477. DOI: https://doi.org/10.3390/en13133477
- 112 J. Chen, S. Yun, J. Shi, Z. Wang, Y. Abbas, K. Wang, F. Han, B. Jia, H. Xu, T. Xing, B. Li, Bioresour. Technol. 2020, 307, 123204. DOI: https://doi.org/10.1016/j.biortech.2020.123204
- 113 E. Abdelsalam, M. Samer, Y. A. Attia, M. A. Abdel-Hadi, H. E. Hassan, Y. Badr, Renewable Energy 2016, 87, 592–598. DOI: https://doi.org/10.1016/j.renene.2015.10.053
- 114 J. Gustavsson, S. Shakeri Yekta, C. Sundberg, A. Karlsson, J. Ejlertsson, U. Skyllberg, B. H. Svensson, Appl. Energy 2013, 112, 473–477. DOI: https://doi.org/10.1016/j.apenergy.2013.02.009
- 115 Y. Cai, L. Janke, Z. Zheng, X. Wang, J. Pröter, F. Schäfer, Bioresour. Technol. Rep. 2021, 14, 100662. DOI: https://doi.org/10.1016/j.biteb.2021.100662