Biotechnology and Bioprocess Engineering – From the First Ullmann's Article to Recent Trends†
Huschyar Al-Kaidy
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorAnna Duwe
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorManuel Huster
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorKai Muffler
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorChristin Schlegel
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorTim Sieker
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorRalf Stadtmüller
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorNils Tippkötter
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorCorresponding Author
Roland Ulber
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.Search for more papers by this authorHuschyar Al-Kaidy
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorAnna Duwe
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorManuel Huster
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorKai Muffler
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorChristin Schlegel
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorTim Sieker
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorRalf Stadtmüller
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorNils Tippkötter
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
Search for more papers by this authorCorresponding Author
Roland Ulber
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
University of Kaiserslautern, Department of Bioprocess Engineering, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.Search for more papers by this authorEnglish Version of DOI: 10.1002/cite.201400083
Abstract
For several thousand years, biotechnology and its associated technical processes have had a great impact on the development of mankind. Based on empirical methods, in particular for the production of foodstuffs and daily commodities, these disciplines have become one of the most innovative future issues. Due to the increasing detailed understanding of cellular processes, production strains can now be optimized. In combination with modern bioprocesses, a variety of bulk and fine chemicals as well as pharmaceuticals can be produced efficiently. In this article, some of the current trends in biotechnology are discussed.
References
- 1 The Hymn to Ninkasi – Making Beer, www.piney.com/BabNinkasi.html (Accessed on April 01, 2014)
- 2 K. Soyez, R. Ulber, CHIUZ 2004, 3, 172–180.
- 3 Stockholmer Papyrus, www.seilnacht.tuttlingen.com/Lexikon/Waid2.htm (Accessed on April 01, 2014)
- 4 L. Ercker, Aula subterranean 1574. http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/mpiwg/online/permanent/library/TFEB6E98/pageimg&viewMode=index&pn=1&mode=imagepath (Accessed on April 01, 2014).
- 5 H. J. Rehm, Biotechnologie, in Ullmann‘s Encyclopedia of Industrial Chemistry, Verlag Chemie, Weinheim 1974, 496–526.
- 6 Biotechnologie, DECHEMA, Frankfurt 1976. http://biotech.dechema.de/biotech_media/Downloads/PositionsundStatuspapiere/Biotechnologie_1976.pdf (Accessed on March 24, 2014).
- 7 D. Kähler, Der Nobelpreisträger: Emil Fischer in Berlin, 1st ed., Ranstein-Verlag, Berlin 2009.
- 8 S. Cohen, A. Chang, H. Boyer, R. Helling, Proc. Natl. Acad. Sci. U.S.A. 1973, 70 (11), 3240–3244.
- 9 Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2010.
- 10 Encyclopedia of Industrial Biotechnology (Eds: M. C. Flickinger), Wiley-VCH, Weinheim 2010.
- 11 P. de Almeida, P. D. Silva, Energy Policy 2009, 37 (4), 1267–1276. DOI: 10.1016/j.enpol.200811016
- 12 J. K. Bang, A. Foller, M. Buttazzoni, Industrial Biotechnology, WWF Dänemark, Kopenhagen 2009.
- 13 R. Gent, M. Reuter, Statusbericht zu möglichen Potentialen von Bioraffinerien für die Bereitstellung von Rohstoffen in Industrie und Forschung, Deutsche Industrievereinigung Biotechnologie (DIB-VCI), Frankfurt 2010.
- 14 T. Werpy, G. Petersen, Top Value Added Chemicals From Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas, U.S. Department of Energy, Washington, D.C. 2004.
- 15 B. Kamm, M. Makk, Appl. Microbiol. Biotechnol. 2004, 64 (2), 137–145. DOI: 10.1007/s0025300315377
- 16 R. Hatti-Kaul, U. Törnvall, L. Gustafsson, P. Börjesson, Trends Biotechnol. 2006, 25 (3), 119–124. DOI: 10.1016/j.tibtech.200701001
- 17 T. Benzing, T. Böhland, U. R. Fritsche, M. Fröhling, A. Gröngröft, A. Guenther, J. Günther, M. Hempel, A. Hiltermann, T. Hirth, N. Holst, B. Horbach, R. Jossek, B. Kamm, A. Koltermann, D. Maga, F. Müller-Langer, D. Peters, J. Puls, J. Rothermel, K. Sternberg, H. Stichnothe, R. Strauch, R. Ulber, A. Vetter, K. Vorlop, W. Wach, M. Wolperdinger, Roadmap Bioraffinerien, Die Bundesregierung, Berlin 2012.
- 18 V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, D. B. Levin, Biotechnol. Adv. 2011, 29 (6), 675–685. DOI: 10.1016/j.biotechadv.201105005
- 19 J. S. Van Dyk, B. I. Pletschke, Biotechnol. Adv. 2012, 30 (6), 1458–1480. DOI: 10.1016/j.biotechadv.201203002
- 20 L. F. Jönsson, B. Alriksson, N. O. Nilvebrant, Biotechnol. Biofuels. 2013, 6 (1), 16. DOI: 10.1186/1754-6834-6-16
- 21 M. Patel, M. Crank, V. Dornburg, B. Hermann, L. Roes, B. Hüsing, L. Overbeek, F. Terragni, E. Recchia, Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources – The Potential of White Biotechnology, The BREW Project, Utrecht University, Utrecht 2006.
- 22 Rahmenplan zum Verbundvorhaben “Lignocellulose-Bioraffinerie‘‘. Aufschluss lignocellulosehaltiger Rohstoffe und vollständige stoffliche Nutzung der Komponenten (Phase 2) – Projektvorschlag, Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Berlin 2010.
- 23 G. Jäger, J. Büchs, Biotechnol. J. 2012, 7 (9), 1122–1136. DOI: 10.1002/biot.201200033
- 24
B. Saake, R. Lehnen, Lignin, in Ullmann‘s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2007. DOI: 10.1002/14356007.a15_305.pub3
10.1002/14356007.a15_305.pub3 Google Scholar
- 25 S. Liu, H. Lu, R. Hu, A. Shupe, L. Lin, B. Liang, Biotechnol. Adv. 2012, 30 (4), 785–810. DOI: 10.1016/j.biotechadv.201201013
- 26 J. Zakzeski, A. L. Jongerius, P. C. Bruijnincx, B. M. Weckhuysen, ChemSusChem 2012, 5 (8), 1602–1609. DOI: 10.1002/cssc.201100699
- 27 Rahmenplan zum Verbundvorhaben "LignocelluloseBioraffinerie". Aufschluss lignocellulosehaltiger Rohstoffe und vollständige stoffliche Nutzung der Komponenten (Phase 2), Abschlussbericht, Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Berlin 2014.
- 28 J. Lima-Ramos, W. Neto, J. M. Woodley, Top. Catal. 2014, 57 (5), 301–320.
- 29 J. M. Woodley, Trends Biotechnol. 2008, 26, 321–327.
- 30 M. Alcalde, M. Ferrer, F. J. Plou, A. Ballesteros, Trends Biotechnol. 2006, 24 (6), 281–287.
- 31 B. Rosche, X. Z. Li, B. Hauer, A. Schmid, K. Buehler, Trends Biotechnol. 2009, 27 (11), 636–643.
- 32 A. N. Tsoligkas, M. Winn, J. Bowen, T. W. Overton, M. J. H. Simmons, R. J. M. Goss, ChemBioChem 2011, 12 (9), 1391–1395.
- 33 B. Halan, K. Buehler, A. Schmid, Trends Biotechnol. 2012, 30 (9), 453–465.
- 34 M. I. Setyawati, L.-J. Chien, C.-K. Lee, Biochem. Eng. J. 2009, 43 (1), 78–84.
- 35
H.-G. Elias, Makromoleküle: Industrielle Polymere und Synthesen, Vol. 3, 6th ed., Wiley-VCH, Weinheim 2001, 467.
10.1002/9783527626519 Google Scholar
- 36 W. Storhas, Bioverfahrensentwicklung, 2nd ed., Wiley-VCH, Weinheim 2013, 489.
- 37 J. Amadio, E. Casey, C. D. Murphy, Appl. Microbiol. Biotechnol. 2013, 97 (13), 5955–5963.
- 38 R. Gross, K. Buehler, A. Schmid, Biotechnol. Bioeng. 2013, 110 (2), 424–436.
- 39 X. Z. Li, B. Hauer, B. Rosche, J. Microbiol. Biotechnol. 2013, 23 (2), 195–204.
- 40 B. Halan, A. Schmid, K. Buehler, Biotechnol. Bioeng. 2010, 106 (4), 516–527.
- 41 R. Gross, K. Lang, K. Buehler, A. Schmid, Biotechnol. Bioeng. 2009, 105 (4), 705–717.
- 42 K. Muffler, M. Lakatos, C. Schlegel, D. Strieth, S. Kuhne, R. Ulber, Adv. Biochem. Eng. Biotechnol 2014, 146, 123–161. DOI: 10.1007/10_2013_267
- 43 R. M. Donlan, Emerg. Infect. Dis 2002, 8 (9), 881–890.
- 44 M. M. T. Khan, T. Chapman, K. Cochran, A. J. Schuler, Water Research 2013, 47 (7), 2190–2198.
- 45 H. Beyenal, Z. Lewandowski, AIChE J. 2001, 47, 1689–1697.
- 46 D. R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Anal. Chem. 2002, 74 (12), 2623–2636.
- 47 G. T. Vladisavljević, N. Khalid, M. A. Neves, T. Kuroiwa, M. Nakajima, K. Uemura, S. Ichikawa, I. Kobayashi, Adv. Drug Deliver. Rev. 2013, 65 (11–12), 1626–1663.
- 48 T. M. Squires, S. R. Quake, Rev. Mod. Phys. 2005, 77 (3), 977–1026.
- 49 H. Song, D. L. Chen, R. F. Ismagilov, Angew. Chem., Int. Edit. 2006, 45 (44), 7336–7356.
- 50 V. Hessel, T. Noël, Micro Process Technology, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2012.
- 51 Y. Zhang, P. Ozdemir, Anal. Chim. Acta 2009, 638 (2), 115–125.
- 52 P. S. Dittrich, A. Manz, Nat. Rev. Drug Discov. 2006, 5 (3), 210–218.
- 53 M. B. Esch, T. L. King, M. L. Shuler, Annu. Rev. Biomed. Eng. 2011, 13 (1), 55–72.
- 54 D. Huh, G. A. Hamilton, D. E. Ingber, Trends Cell Biol. 2011, 21 (12), 745–754.
- 55 A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, M. L. Shuler, Biotechnol. Progr. 2004, 20 (1), 338–345.
- 56 S. C. Terry, J. H. Jerman, J. B. Angell, IEEE Trans. Electron Devices 1979, 26 (12), 1880–1886.
- 57 A. Manz, N. Graber, H. M. Widmer, Sens. Actuators B: Chem. 1990, 1 (1–6), 244–248.
- 58 D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Chem. Soc. Rev. 2010, 39 (3), 1153.
- 59 K. A. Erickson, P. Wilding, Clin. Chem. 1993, 39 (2), 283–287.
- 60 K. S. Elvira, X. C. I. Solvas, R. C. R. Wootton, A. J. deMello, Nat. Chem. 2013, 5 (11), 905–915.
- 61 T. Ohashi, H. Kuyama, K. Suzuki, S. Nakamura, Anal. Chim. Acta 2008, 612 (2), 218–225.
- 62 V. Srinivasan, V. K. Pamula, R. B. Fair, Anal. Chim. Acta 2004, 507 (1), 145–150.
- 63 U. Lehmann, C. Vandevyver, V. K. Parashar, M. A. M. Gijs, Angew. Chem., Int. Ed. 2006, 45 (19), 3062–3067.
- 64 Z. Guttenberg, H. Muller, H. Habermuller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth, Lab Chip 2005, 5 (3), 308–317.
- 65 P. Aussillous, D. Quéré, Nature 2001, 411 (6840), 924–927.
- 66 L. Mahadevan, Nature 2001, 411 (6840), 895–896.
- 67 J. Tian, T. Arbatan, X. Li, W. Shen, Chem. Commun. 2010, 46 (26), 4734–4736.
- 68 E. Bormashenko, A. Musin, Appl. Surf. Sci. 2009, 255 (12), 6429–6431.
- 69 N. Tippkötter, H. Al-Kaidy, R. Ulber, EU Patent 13 003 400.2, 2013.
- 70 N. Tippkötter, H. Al-Kaidy, S. Wollny, R. Ulber, Chem. Ing. Tech. 2013, 85 (1–2), 76–86.
- 71 U. Lehmann, S. Hadjidj, V. K. Parashar, C. Vandevyver, A. Rida, M. A. M. Gijs, Sens. Actuators B: Chem. 2006, 117 (2), 457–463.
- 72 M. Shikida, K. Takayanagi, K. Inouchi, H. Honda, K. Sato, Sens. Actuators B: Chem. 2006, 113 (1), 563–569.
- 73 N. Zhao, X. Y. Zhang, Y. F. Li, X. Y. Lu, S. L. Sheng, Cell. Biochem. Biophys. 2007, 49 (2), 91–97.
- 74 Synthetic Biology – Applying Engineering to Biology, Report EUR 21796, European Commission, Brüssel 2005.
- 75 Synthetic Biology: Scope, Applications and Implications, Report, The Royal Acedemy of Engineering, London 2009.
- 76
A. Pühler, B. Müller-Röber, M. D. Weitze, Synthetische Biologie, Serie acatech Diskussion, Springer, Berlin 2011. DOI: 10.1007/978-3-642-22354-9
10.1007/978‐3‐642‐22354‐9 Google Scholar
- 77 K. Josephson, M. C. T. Hartman, J. W. Szostak, J. Am. Chem. Soc. 2005, 127 (33), 11727–11735.
- 78 H. Burtscher, S. Berner, R. Seibl, K. Mühlecker, Nucleic Acis, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2000.
- 79 M. C. T. Hartman, K. Josephson, C. W. Lin, J. W. Szostak, PLoS ONE 2007, 2 (10), e972.
- 80 J. Bath, A. J. Turberfield, Nat. Nanotechnol. 2007, 2 (5), 275–284.
- 81 Y. Chen, M. Wang, C. Mao, Angew. Chem., Int. Ed. Engl. 2004, 43 (27), 3554–3557.
- 82 O. J. N. Bertrand, D. K. Fygenson, O. A. Saleh, PNAS 2012, 109 (43), 17342–17347.
- 83 N. Park, S. H. Um, H. Funabashi, J. Xu, D. Luo, Nat. Mater. 2009, 8 (5), 432–437.
- 84 V. Noireaux, A. Lidchaber, PNAS 2004, 101 (51), 17669–17674.
- 85 I. A. Chen, K. Salehi-Ashtiani, J. W. Szostak, J. Am. Chem. Soc. 2005, 127 (38), 13213–13219.
- 86 D. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R. Y. Chuang, M. A. Algire, G. A. Benders, M. G. Montague, L. Ma, M. M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E. A. Denisova, L. Young, Z. Q. Qi, T. H. Segall-Shapiro, C. H. Calvey, P. P. Parmar, C. A. Hutchison, H. O. Smith, J. C. Venter, Science 2010, 329 (5987), 52–56.
- 87 K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling, T. R. Cech, Cell 1982, 31 (1), 147–157.
- 88 D. P. Bartel, J. A. Doudna, N. Usman, J. W. Szostak, Mol. Cell. Biol. 1991, 11 (6), 3390–3394.
- 89 W. Winkler, A. Nahvl, R. R. Breaker, Lett. Nature 2002, 419 (6910), 952–956.
- 90 D. G. Sashital, S. E. Butcher, ACS Chem. Biol. 2006, 1 (6), 341–345.
- 91 R. R. Breaker, Nat. Biotechnol. 1997, 15 (5), 427–431.
- 92 S. K. Silverman, Org. Biomol. Chem. 2004, 2 (19), 2701–2706.
- 93 E. Golub, R. Freeman, I. Willner, Anal. Chem. 2013, 85 (24), 12126–12133.
- 94 D. J. F. Chinnapen, D. Sen, PNAS 2003, 101 (1), 65–69.
- 95 D. M. Mishler, J. P. Gallivan, Prog. Nucleic Acid Res. Mol. Biol. 2014, 42 (10), 6753–6761. DOI: 10.1093/nar/gku262
- 96 A. Wittmann, B. Suess, Fed. Europ. Biochem. Soc., Lett. 2012, 586 (15), 2076–2083.
- 97 A. Padirac, T. Fujii, Y. Rondelez, Curr. Opin. Biotechnol. 2012, 24 (4), 575–580.
- 98 W. T. Huang, H. Q. Luo, N. B. Li, Anal. Chem. 2014, 86 (9), 4494–4500.
- 99 P. Siuti, J. Yazbek, T. K. Lu, Nat. Protoc. 2014, 9 (6), 1292–1300.
- 100 S. M. Douglas, I. Bachelet, G. M. Church, Science 2012, 335 (6070), 831–834.
- 101 Y. Jiang, N. Liu, W. Guo, F. Xia, L. Jiang, J. Am. Chem. Soc. 2012, 134 (37), 15395–15401.
- 102 V. C. Özalp, T. Schäfer, Chem. Eur. J. 2011, 17 (36), 9893–9896.
- 103 M. O. Altman, Y. M. Chang, X. Xiong, W. Tan, Sci. Rep. 2013, 3, 3343.
- 104 E. Mastronardi, A. Foster, X. Zhang, M. C. DeRosa, Sensors 2014, 14 (2), 3156–3171.
- 105 K. M. You, S. H. Lee, A. Im, S. B. Lee, Biotechnol. Bioprocess Eng. 2003, 8 (2), 64–75.
- 106 Y. S. Kim, M. B. Gu, Adv. Biochem. Eng./Biotechnol. 2013, 140, 29–67.
- 107 M. Chang, M. Kwon, S. Kim, N. O. Yunn, D. Kim, S. H. Ryu, J. B. Lee, J. Biomed. Opt. 2014, 19 (5), 051204-1–051204-6.
- 108 M. N. Stoijanovic, P. Prada, D. W. Landry, J. Am. Chem. Soc. 2001, 123 (21), 4928–4931.
- 109 O. Chumphukam, T. T. Le, A. E. G. Cass, Molecules 2014, 19 (4), 4986–4996.
- 110 N. Nikolaus, B. Strehlitz, Sensors 2014, 14 (2), 3737–3755.
- 111 Z. Lv, A. Chen, J. Liu, Z. Guan, Y. Zhou, S. Xu, S. Yang, C. Li, PLoS ONE 2014, 9 (1), e85968.
- 112 W. H. Ali, V. Pichon, Anal. Bioanal. Chem. 2014, 406 (4), 1233–1240.
- 113 X. Pei, J. Zhang, J. Liu, Mol. Clin. Oncol. 2014, 2 (3), 341–348.
- 114 Y. Gao, X. Yu, B. Xue, F. Zhou, X. Wang, D. Yang, N. Liu, L. Xu, X. Fang, H. Zhu, PLoS ONE 2014, 9 (2), e90333.
- 115 P. Ruff, K. D. Koh, H. Keskin, R. B. Pai, F. Storici, Nucleic Acid Res. 2014, 42 (7), e61.
- 116 Ö. Kökpinar, J. G. Walter, Y. Shoham, F. Stahl, T. Scheper, Biotechnol. Bioeng. 2011, 108 (10), 2371–2379.
- 117 Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, R. Caire, D. Tseng, A. Ozcan, ACS Nano 2014, 8 (2), 1121–1129.
- 118 Y. K. Jung, T. Lee, E. Shin, B. S. Kim, Sci. Rep. 2013, 3, 3367.
- 119 Y. Zhuo, M. Ma, Y. Chai, M. Zhao, R. Yuan, Anal. Chim. Acta 2013, 809, 47–53.
- 120 S. Zhang, Y. Wu, W. Zhang, ChemMedChem 2014, 9 (5), 899–911.
- 121 L. Zhu, C. Li, Z. Zhu, D. Liu, Y. Zou, C. Wang, H. Fu, C. J. Yang, Anal. Chem. 2012, 84 (19), 8383–8390.
- 122 O. Boyacioglu, C. H. Stuart, G. Kulik, W. H. Gmeiner, Mol. Ther. Nucleic Acids 2013, 2, e107.
- 123 H. Hasegawa, K. Taira, K. Sode, K. Ikebukuro, Sensors 2008, 8 (2), 1090–1098.
- 124 P. R. Mallikaratchy, A. Ruggiero, J. R. Gardner, V. Kuryavyi, W. F. Maguire, M. L. Heaney, M. R. McDevitt, D. J. Patel, D. A. Scheinberg, Nucleic Acids Res. 2011, 39 (6), 2458–2469.
- 125 L. J. McBride, M. H. Caruthers, Tetrahedron Lett. 1983, 24 (3), 245–248.
- 126 R. Stadtmüller, N. Tippkötter, R. Ulber, EP 13 001069.7, 2013.