Natural Compounds with Oxepinochromene Scaffold. Structure, Source, Biological Activity and Synthesis
Corresponding Author
Renata Gašparová
Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Námestie J. Herdu 2, Trnava, Slovak Republic
Search for more papers by this authorCorresponding Author
Renata Gašparová
Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Námestie J. Herdu 2, Trnava, Slovak Republic
Search for more papers by this authorAbstract
Natural products containing oxepinochromene motifs were first isolated from natural sources in 1960s. Natural oxepinochromenes are relatively rare and their source is limited to several endophytic and endolichenic fungi or higher plants. The importance of natural oxepinochromene derivatives lies in their promising biological activity. They exhibit a wide range of activities such as antibacterial, anticancer, anti-inflammatory or antifungal. Consequently, their synthesis has attracted significant interest. This review discusses the source, biosynthesis, biological activity, reactions as well as the total synthesis of oxepinochromene derivatives, belonging to the xanthone, terpenoid and flavone groups of phenolic secondary metabolites.
Graphical Abstract
Conflict of interest
The authors declare no conflict of interest.
References
- 1N. Radić, B. Štrukelj, ‘Endophytic fungi: the treasure chest of antibacterial substances’, Phytomedicine 2012, 9, 1270–1284.
- 2B. Joseph, R. M. Priya, ‘Bioactive Compounds from Endophytes and their Potential in Pharmaceutical Effect: A Review’, Am. J. Biochem. Mol. Biol. 2011, 1, 291–309.
10.3923/ajbmb.2011.291.309 Google Scholar
- 3B. N. Singh, D. K. Upreti, V. K. Gupta, X.-F. Dai, Y. Jiang, ‘Endolichenic Fungi: A Hidden Reservoir of Next Generation Biopharmaceuticals’, Trends Biotechnol. 2017, 35, 808–813.
- 4S. Agrawal, S. K. Deshmukh, M. S. Reddy, R. Prasad, M. Goel, ‘Endolichenic fungi: A hidden source of bioactive metabolites’, S. Afr. J. Bot. 2020, 134, 163–186.
- 5A. Kessler, A. Kalske, ‘Plant Secondary Metabolite Diversity and Species Interactions’, Annu. Rev. Ecol. Syst. 2018, 49, 115–138.
10.1146/annurev-ecolsys-110617-062406 Google Scholar
- 6V. Lattanzio, ‘in Natural products. Phenolic Compounds: Introduction’, Ed. K. G. Ramawat, J. M. Mérillon, Springer-Verlag, Berlin, Heidelberg 2013, pp. 1543–1580.
- 7P. Cosme, A. B. Rodríguez, J. Espino, M. Garrido, ‘Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications’, Antioxidants 2020, 9, 1263.
- 8J. Roasa, R. De Villa, Y. Mine, R. Tsao, ‘Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review’, Trends Food Sci. Technol. 2021, 116, 954–974.
- 9E. Karimi, E. Oskoueian, R. Hendra, A. Oskoueian, H. Z. E. Jaafar, ‘Phenolic Compounds Characterization and Biological Activities of Citrus aurantium Bloom’, Molecules 2012, 17, 1203–1218.
- 10F. Shahidi, P. Ambigaipalan, ‘Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review’, J. Funct. Foods 2015, 18, 820–897.
- 11R. Pedreschi, L. J. Cisneros-Zevallos, ‘Antimutagenic and Antioxidant Properties of Phenolic Fractions from Andean Purple Corn (Zea mays L.)’, J. Agric. Food Chem. 2006, 54, 4557–4567.
- 12R. W. Teel, A. Castonguay, ‘Antimutagenic effects of polyphenolic compounds’, Cancer Lett. 1992, 66, 107–113.
- 13M. Chen, Z. Zhao, S. Yu, ‘Cytotoxicity and Apoptotic Effects of Polyphenols from Sugar Beet Molasses on Colon Carcinoma Cells In Vitro’, Int. J. Mol. Sci. 2016, 17, 993.
- 14C. V. Anh, J.-H. Kwon, J. S. Kang, H.-S. Lee, C.-S. Heo, H. J. Shin, ‘Antibacterial and Cytotoxic Phenolic Polyketides from Two Marine-Derived Fungal Strains of Aspergillus unguis’, Pharmaceuticals 2022, 15, 74.
- 15N. Yahfoufi, N. Alsadi, M. Jambi, C. Matar, ‘The Immunomodulatory and Anti-Inflammatory Role of Polyphenols’, Nutrients 2018, 10, 1618.
- 16M. Weidenbörner, H. Hindorf, H. C. Jha, P. Tsotsonos, ‘Antifungal activity of flavonoids against storage fungi of the genus Aspergillus’, Phytochemistry 1990, 29, 1103–1105.
- 17K. Chojnacka, D. Skrzypczak, G. Izydorczyk, K. Mikula, D. Szopa, A. Witek-Krowiak, ‘Antiviral Properties of Polyphenols from Plants’, Food 2021, 10, 2277.
- 18N. Kuntala, J. R. Telu, J. S. Anireddy, S. Pal, ‘A Brief Overview on Chemistry and Biology of Benzoxepine’, Lett. Drug Des. Discovery 2017, 4, 1086–1098.
- 19N. Panda, I. Mattan, S. Ojha, C. S. Purohit, ‘Synthesis of medium-sized (6-7-6) ring compounds by iron-catalyzed dehydrogenative C−H activation/annulation’, Org. Biomol. Chem. 2018, 16, 7861–7870.
- 20T. D. Bhutia, K. M. Valant-Vetschera, L. Brecker, ‘Orphan Flavonoids and Dihydrochalcones from Primula Exudates’, Nat. Prod. Commun. 2013, 8, 1081–1084.
- 21J. Wang, W. He, X. Huang, X. T. Shengrong, ‘Antifungal New Oxepine-Containing Alkaloids and Xanthones from the Deep-Sea-Derived Fungus Aspergillus versicolor SCSIO 05879’, J. Agric. Food Chem. 2016, 64, 2910–2916.
- 22P. Zhang, X.-M. Li, J.-N. Wang, B.-G. Wang, ‘Oxepine-Containing Diketopiperazine Alkaloids from the Algal-Derived Endophytic Fungus Paecilomyces variotii EN-291’, Helv. Chim. Acta 2015, 98, 800–804.
- 23L. Castedo, ‘in The Chemistry and Biology of Isoquinoline Alkaloids. The Chemistry and Pharmacology of Cularine Alkaloids’, Ed.: J. D. Phillipson, M. F. Roberts, M. H. Zenk, Proceedings in Life Sciences. Springer, Berlin, Heidelberg 1985, pp. 102–125.
- 24G. R. Pettit, A. Numata, C. Iwamoto, Y. Usami, T. Yamada, H. Ohishi, G. M. Cragg, ‘Antineoplastic agents. 551. Isolation and structures of bauhiniastatins 1–4 from Bauhinia purpurea’, J. Nat. Prod. 2006, 69, 323–327.
- 25B. W. T. Gruijters, A. van Veldhuizen, C. A. G. M. Weijers, J. B. P. A. Winjberg, ‘Total Synthesis and Bioactivity of Some Naturally Occurring Pterulones’, J. Nat. Prod. 2002, 65, 558–561.
- 26Y.-M. Hsu, T.-Y. Wu, Y.-C. Du, M. El-Shazly, L. Beerhues, T. D. Thang, H. Van Luu, T.-L. Hwang, F.-R. Chang, Y.-C. Wu, ‘3-Methyl-4,5-dihydro-oxepine, polyoxygenated seco-cyclohexenes and cyclohexenes from Uvaria flexuosa and their anti-inflammatory activity’, Phytochemistry 2016, 122, 184–192.
- 27Y. Wang, Z. Zheng, S. Liu, H. Zhang, E. Li, L. Guo, Y. Che, ‘Oxepinochromenones, Furochromenone, and their Putative Precursors from the Endolichenic Fungus Coniochaeta sp.’, J. Nat. Prod. 2010, 73, 920–924.
- 28M. F. Grundon, ‘The biosynthesis of aromatic hemiterpenes’, Tetrahedron 1978, 34, 143–161.
- 29A. Hakim, ‘Diversity of secondary metabolites from Genus Artocarpus (Moraceae)’, Nusantara Biosci. 2010, 2, 146–156.
- 30K.-S. Masters, S. Bräse, ‘Xanthones from Fungi, Lichens, and Bacteria: The Natural Products and Their Synthesis’, Chem. Rev. 2012, 112, 3717–3776.
- 31K. Krohn, S. F. Kouam, G. M. Kuigoua, H. Hussain, S. Cludius-Brandt, U. Flörke, T. Kurtán, G. Pescitelli, L. Di Bari, S. Draeger, B. Schulz, ‘Xanthones and Oxepino[2,3-b]chromones from Three Endophytic Fungi’, Chem. Eur. J. 2009, 15, 12121–12132.
- 32S. Bräse, F. Gläser, C. S. Kramer, S. Lindner, A. M. Linsenmeier, K.-S. Masters, A. C. Meister, B. M. Ruff, S. Zhong, in ′Progress in the Chemistry of Organic Natural Products. The Chemistry of Mycotoxins’, Ed. A. D. Kinghorn, H. Falk, J. Kobayashi, Springer-Verlag Wien 2013, Vol. 97, pp. 153–205.
- 33J. G. Hill, T. T. Nakashima, J. C. Vederas, ‘Fungal xanthone biosynthesis. Distribution of acetate-derived oxygens in ravenelin’, J. Am. Chem. Soc. 1982, 104, 1745–1748.
- 34W. Schmidt, L. Beerhues, ‘Alternative pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L.’, FEBS Lett. 1997, 420, 143–146.
- 35K. Horiguchi, Y. Suzuki, T. Sassa, ‘Biosynthetic Study of Chloromonilicin, a Growth Self-inhibitor Having a Novel Lactone Ring, from Monilinia fructicola’, Agric. Biol. Chem. 1989, 53, 2141–2145.
- 36H. Kachi, T. Sassa, ‘Isolation of Moniliphenone, a Key Intermediate in Xanthone Biosynthesis from Monilinia fructicola’, Agric. Biol. Chem. 1986, 50, 1669–1671.
- 37M. Isaka, M. Sappan, P. Auncharoen, P. Srikitikulchai, ‘Chromone derivatives from the wood-decay fungus Rhizina sp. BCC 12292’, Phytochem. Lett. 2010, 3, 152–155.
- 38H. Xiong, G.-K. Xiao, G.-D. Chen, H.-R. Chen, D. Hu, X.-X. Li, S.-W. Zhong, L.-D. Guo, X.-S. Yao, H. Gao, ‘Sporormiellin A, the first tetrahydrofuran-fused furochromone with an unprecedented tetracyclic skeleton from Sporormiella minima’, RSC Adv. 2014, 4, 24295.
- 39J. C. Liermann, H. Kolshorn, T. Opatz, E. Thines, H. Anke, ‘Xanthepinone, an antimicrobial polyketide from a soil fungus closely related to Phoma medicaginis’, J. Nat. Prod. 2009, 72, 1905–1907.
- 40S. B. Singh, E. T. Jones, M. A. Goetz, G. F. Bills, M. Nallin-Omstead, R. G. Jenkins, R. B. Lingham, K. C. Silverman, J. B. Gibbs, ‘Fusidienol: A novel inhibitor of ras farnesyl-protein transferase from Fusidium griseum’, Tetrahedron Lett. 1994, 35, 4693–4696.
- 41S. B. Singh, R. G. Ball, D. L. Zink, R. L. Monaghan, J. D. Polishook, M. Sanchez, F. Pelaez, K. C. Silverman, R. B. Lingham, ‘Fusidienol A: A Novel Ras Farnesyl-Protein Transferase Inhibitor from Phoma sp.’, J. Org. Chem. 1997, 62, 7485–7488.
- 42T. D. Tran, B. A. P. Wilson, C. J. Henrich, L. M. Staudt, L. R. H. Krumpe, E. A. Smith, J. King, K. L. Wendt, A. M. Stchigel, A. N. Miller, R. H. Cichewicz, B. R. O'Keefe, K. R. Gustafson, ‘Secondary Metabolites from the Fungus Dictyosporium sp. and Their MALT1 Inhibitory Activities’, J. Nat. Prod. 2019, 82, 154–162.
- 43S.-Y. Liu, L.-Z. Wang, Y.-F. Wang, L. Li, G.-Y. Han, B.-Y. Zhang, Y. Guo, Y.-Z. He, S.-M. Fang, H. Zhang, ‘Isolation and characterization of two new chroman-4-ones from the endophytic fungus Penicillium chrysogenum obtained from Eucommia ulmoides Oliver’, Nat. Prod. Res. 2022, 36, 3297–3302.
- 44L.-H. Meng, X.-M. Li, C.-T. Lv, C.-G. Huang, B.-G. Wang, ‘Brocazines A–F, Cytotoxic Bisthiodiketopiperazine Derivatives from Penicillium brocae MA-231, an Endophytic Fungus Derived from the Marine Mangrove Plant Avicennia marina’, J. Nat. Prod. 2014, 77, 1921–1927.
- 45T. S. Bugni, V. S. Bernan, M. Greenstein, J. E. Janso, W. M. Maiese, C. L. Mayne, C. M. Ireland, ‘Brocaenols A–C: Novel Polyketides from a Marine-Derived Penicillium brocae’, J. Org. Chem. 2003, 68, 2014–2017.
- 46M. Leyte-Lugo, M. Figueroa, M. del C González, A. E. Glenn, M. González-Andrade, R. Mata, ‘Metabolites from the entophytic fungus Sporormiella minimoides isolated from Hintonia latiflora’, Phytochemistry 2013, 96, 273–278.
- 47T. Sassa, H. Kachi, M. Nukina, Y. Suzuki, ‘Chloromonilicin, a new antifungal metabolite produced by Monilinia fructicola’, J. Antibiot. 1985, 38, 439–441.
- 48A. Cimmino, G. Pescitelli, A. Berestetskiy, A. Dalinova, D. Krivorotov, A. Tuzi, A. Evidente, ‘Biological evaluation and determination of the absolute configuration of chloromonilicin, a strong antimicrobial metabolite isolated from Alternaria sonchi’, J. Antibiot. 2016, 69, 9–14.
- 49A. Dalinova, L. Chisty, D. Kochura, V. Garnyuk, M. Petrova, D. Prokofieva, A. Yurchenko, V. Dubovik, A. Ivanov, S. Smirnov, A. Zolotarev, A. Berestetskiy, ‘Isolation and Bioactivity of Secondary Metabolites from Solid Culture of the Fungus, Alternaria sonchi’, Biomol. Eng. 2020, 10, 81.
- 50H. Kachi, H. Hattori, T. Sassa, ‘A new antifungal substance, bromomonilicin, and its precursor produced by Monilinia fructicola’, J. Antibiot. 1986, 39, 164–166.
- 51M. A. Cabello, G. Platas, J. Collado, M. T. Diez, I. Martin, F. Vicente, M. Meinz, J. C. Onishi, C. Douglas, J. Thompson, M. B. Kurtz, R. E. Schwartz, G. F. Bills, R. A. Giacobbe, G. K. Abruzzo, A. M. Flattery, L. Kong, F. Peláez, ‘Arundifungin, a novel antifungal compound produced by fungi: biological activity and taxonomy of the producing organisms’, Int. Microbiol. 2001, 4, 93–102.
- 52M. Tsukada, M. Fukai, K. Miki, T. Shiraishi, T. Suzuki, K. Nishio, T. Sugita, M. Ishino, K. Kinoshita, K. Takahashi, M. Shiro, K. Koyama, ‘Chemical Constituents of a Marine Fungus, Arthrinium sacchari’, J. Nat. Prod. 2011, 74, 1645–1649.
- 53H. P. Ramos, M. R. Simao, J. M. de Souza, L. G. Magalhaes, V. Rodrigues, S. R. Ambrosio, S. Said, ‘Evaluation of dihydroisocoumarins produced by the endophytic fungus Arthrinium state of Apiospora montagnei against Schistosoma mansoni’, Nat. Prod. Res. 2013, 27, 2240–2243.
- 54J. Bao, F. He, J.-H. Yu, H. Zhai, Z.-Q. Cheng, C.-S. Jiang, Y. Zhang, Y. Zhang, X. Zhang, G. Chen, H. Zhang, ‘New Chromones from a Marine-Derived Fungus, Arthrinium sp., and Their Biological Activity’, Molecules 2018, 23, 1982.
- 55S. Lösgen, J. Magull, B. Schulz, S. Draeger, A. Zeeck, ‘Isofusidienols: Novel Chromone-3-oxepines Produced by the Endophytic Fungus Chalara sp.’, Eur. J. Org. Chem. 2008, 2008, 698–703.
- 56P. Junior, ‘Eranthin und eranthin-β-D-glucosid: zwei neue chromone aus Eranthis hiemalis’, Phytochemistry 1979, 18, 2053–2054.
- 57B. Kopp, E. Kubelka, C. Reich, W. Robien, W. Kubelka, ‘4H-Chromenone Glycosides from Eranthhis hyernalis (L.) SALISBURY’, Helv. Chim. Acta 1991, 74, 611–616.
- 58M. Kuroda, S. Uchida, K. Watanabe, Y. Mimaki, ‘Chromones from the tubers of Eranthis cilicica and their antioxidant activity’, Phytochemistry 2009, 70, 288–293.
- 59C. Van Wyk, F. S. Botha, R. Vleggaar, J. N. Eloff, ‘Obliquumol, a novel antifungal and apotential scaffold lead compound, isolated from the leaves of Ptaeroxylon obliquum (sneezewood) for treatment of Candida albicans infections’, S. Afr. J. Sci. 2018, 37, 66–70.
- 60T. E. Ramadwa, M. D. Awouafack, M. S. Sonopo, J. N. Eloff, ‘Antibacterial and Antimycobacterial Activity of Crude Extracts, Fractions, and Isolated Compounds from Leaves of Sneezewood, Ptaeroxylon obliquum (Rutaceae)’, Nat. Prod. Commun. 2019, 14, 1–7.
- 61M. S. Malefo, T. E. Ramadwa, I. M. Famuyide, L. J. McGaw, J. N. Eloff, M. S. Sonopo, M. A. Selepe, ‘Synthesis and Antifungal Activity of Chromones and Benzoxepines from the Leaves of Ptaeroxylon obliquum’, J. Nat. Prod. 2020, 83, 2508–2517.
- 62T. E. Ramadwa, L. J. McGaw, M. Adamu, B. Madikizela, J. N. Eloff, ‘Anthelmintic, antimycobacterial, antifungal, larvicidal and cytotoxic activities of acetone leaf extracts, fractions and isolated compounds from Ptaeroxylon obliquum (Rutaceae)’, J. Ethnopharmacol. 2021, 280, 114365.
- 63F. M. Dean, D. A. H. Taylor, ‘Extractives from East African Timbers. Part ll. Ptaeroxylon obliquum’, J. Chem. Soc. C 1966, 114–116.
10.1039/J39660000114 Google Scholar
- 64P. H. McCabe, R. McCrindle, R. D. H. Murray, ‘Constituents of sneezewood, Ptaeroxylon obliquum (Thunb.) Radlk. Part I. Chromones’, J. Chem. Soc. C 1967, 145–151.
10.1039/j39670000145 Google Scholar
- 65F. H. Dean, B. Parton, N. Somvichien, D. A. H. Taylor, ‘Chromones, containing an oxepin ring, from Ptaeroxylon obliquum’, Tetrahedron Lett. 1967, 8, 3459–3464.
10.1016/S0040-4039(01)89821-X Google Scholar
- 66F. M. Dean, M. L. Robinson, ‘The heartwood chromones of Cedrelopsis grevei’, Phytochemistry 1971, 10, 3221–3227.
- 67D. A. Mulholland, M. Kotsos, H. A. Mahomed, N. A. Koorbanally, M. Randrianarivelojosia, L. Q. van Ufford, A. J. van den Berg, ‘Coumarins from Cedrelopsis grevei (Ptaeroxylaceae)’, Phytochemistry 2002, 61, 919–922.
- 68S. Afoulous, H. Ferhout, E. G. Raoelison, A. Valentin, B. Moukarzel, F. Couderc, J. Bouajila, ‘Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei’, Food Chem. Toxicol. 2013, 56, 352–362.
- 69A. Mondon, H. Callsen, ‘Chromone und Cumarine aus Cneorurn pulverulentum’, Chem. Ber. 1975, 108, 2005–2020.
- 70B. Epe, U. Oelbermann, A. Mondon, ‘Neue Chromone aus Cneoraceen’, Chem. Ber. 1981, 114, 757–773.
- 71D. Agostinho, L. Boudesocque, I. Thery-Kone, F. Debierre-Grockiego, A. Gueiffier, C. Enguehard-Gueiffier, H. Allouchi, ‘A new meroterpenoid isolated from roots of Ptaeroxylon obliquum Radlk.’, Phytochem. Lett. 2013, 6, 560–566.
- 72A. G. Gonzales, V. Darias, E. Estevez, J. M. Vivas, ‘Chemotherapeutic Study of Chromones from Spanish Cneoraceae’, Planta Med. 1983, 47, 56–58.
- 73E. Shin, C. Lee, S. H. Sung, Y. C. Kim, B. Y. Hwang, M. K. Lee, ‘Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC−T6 hepatic stellate cells’, J. Nat. Med. 2011, 65, 370–374.
- 74Y.-M. Li, M. Jia, H.-Q. Li, N.-D. Zhang, X. Wen, K. Rahman, Q.-Y. Zhang, L.-P. Qin, ‘Cnidium monnieri: A Review of Traditional Uses, Phytochemical and Ethnopharmacological Properties’, Am. J. Chin. Med. 2015, 43, 835–877.
- 75K. Baba, H. Kawanishi, M. Taniguchi, M. Kozawa, ‘Chromones from Cnidium monnieri’, Phytochemistry 1992, 31, 1367–1370.
- 76J. Zhao, M. Zhou, Y. Liu, G. Zhang, Y. Luo, ‘Chromones and coumarins from the dried fructus of Cnidium monnieri’, Fitoterapia 2011, 82, 767–771.
- 77P. G. Harrison, B. K. Bailey, W. Steck, ‘Biosynthesis of Furanochromones’, Can. J. Biochem. 1971, 49, 964–970.
- 78S. Shi, J. Li, X. Zhao, Q. Liu, S. A. Song, ‘A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids’, Phytochemistry 2021, 191, 112895.
- 79X. Yang, Y. Jiang, J. Yang, J. He, J. Sun, F. Chen, M. Zhang, B. Yang, ‘Prenylated flavonoids, promising nutraceuticals with impressive biological activities’, Trends Food Sci. Technol. 2015, 44, 93–104.
- 80A. Mukne, V. Viswanathan, A. Phadatare, ‘Structure pre-requisites for isoflavones as effective antibacterial agents’, Pharm. Rev. 2011, 5, 13–18.
- 81R. Mukai, ‘Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability’, Biosci. Biotechnol. Biochem. 2018, 82, 207–215.
- 82B. Botta, G. D. Monache, P. Menendez, A. Boffi, ‘Novel prenyltransferase enzymes as a tool for flavonoid prenylation’, Trends Pharmacol. Sci. 2005, 26, 606–608.
- 83M. S. Butt, A. Nazir, M. T. Sultan, K. Schroen, ‘Morus alba L. nature's functional Tonic’, Trends Food Sci. Technol. 2008, 19, 505–512.
- 84D. Hawari, M. Mutakin, G. Wilar, J. Levita, ‘Flavonoids of Morus, Ficus, and Artocarpus (Moraceae): A review on their antioxidant activity and the influence of climate on their biosynthesis’, J. Appl. Pharmacol. 2021, 11, 45–64.
- 85Y.-R. Liao, P.-C. Kuo, W.-J. Tsai, G.-J. Huang, K.-H. Lee, T.-S. Wu, ‘Bioactive chemical constituents from the root bark of Morus australis’, Bioorg. Med. Chem. Lett. 2017, 27, 309–313.
- 86U. B. Jagtap, V. A. Bapat, ‘Artocarpus: a review of its traditional uses, phytochemistry and pharmacology’, J. Ethnopharmacol. 2010, 129, 142–166.
- 87T. Nomura, Y. Hanno, M. Aida, ‘Isoprenoid-substituted Flavonoids from Artocarpus Plants (Moraceae)’, Heterocycles 1998, 47, 1179–1205.
- 88I. Musthapa, L. D. Juliawaty, Y. M. Syah, E. H. Hakim, J. Latip, E. L. Ghisalberti, ‘An oxepinoflavone from Artocarpus elasticus with cytotoxic activity against P-388 cells’, Arch. Pharmacal Res. 2009, 32, 191–194.
- 89C. M. M. Santos, A. M. S. Silva, ‘The Antioxidant Activity of Prenylflavonoids’, Molecules 2020, 25, 696.
- 90S. M. A. Lathiff, N. Jemaon, S. A. Abdullah, S. Jamil, ‘Flavonoids from Artocarpus anisophyllus and their Bioactivities’, Nat. Prod. Commun. 2015, 10, 393–396.
- 91S. Toda, Y. Shirataki, ‘Inhibitory Effect of Prenylated Flavonoid in Euchresta japonica and Artocarpus heterophyllus on Lipid Peroxidation by Interaction of Hemoglobin and Hydrogen Peroxide’, Pharm. Biol. 2006, 44, 271–273.
- 92F. Ramli, M. Rahmani, N. K. Kassim, N. M. Hashim, M. A. Sukari, A. M. Akim, R. Go, ‘New diprenylated dihyrochalcones from leaves of Artocarpus elasticus’, Phytochem. Lett. 2013, 6, 582–585.
- 93I. A. Ajayi, ‘in Seeds in Health. Nuts and Seeds in Health and Disease Prevention. Use of Jackfruit (Artocarpus heterophyllus)’, Ed: V. Preedy, R. Watson, V. B. Patel, Elsevier 2011, pp. 677–683.
- 94R. Chen, X. Liu, J. Zou, Y. Yin, B. Ou, J. Li, R. Wang, D. Xie, P. Zhang, J. Dai, ‘Regio- and Stereospecific Prenylation of Flavonoids by Sophora flavescens Prenyltransferase’, Adv. Synth. Catal. 2013, 355, 1817–1828.
- 95D. Barron, R. K. Ibrahim, ‘Isoprenylated flavonoids-a survey’, Phytochemistry 1996, 43, 921–982.
- 96T. Mori, ‘Enzymatic studies on aromatic prenyltransferases’, J. Nat. Med. 2020, 74, 501–512.
- 97B. Botta, A. Vitali, P. Menendez, D. Misiti, G. D. Monache, ‘Prenylated flavonoids: pharmacology and biotechnology’, Curr. Med. Chem. 2005, 12, 717–739.
- 98X. Yu, S.-M. Li, ‘Prenylation of Flavonoids by Using a Dimethylallyltryptophan Synthase, 7-DMATS, from Aspergillus fumigatus’, ChemBioChem 2011, 12, 2280–2283.
- 99T. Fujimoto, Y. Hano, T. Nomura, J. Uzawa, ‘Components of Root Bark of Cudrania tricuspidata 2. Structures of Two New Isoprenylated Flavones, Cudraflavones A and B’, Planta Med. 1984, 50, 161–163.
- 100T. Nomura, T. Fukai, S. Yamada, M. Katayanagi, ‘Studies on the Constituents of the Cultivated Mulberry Tree. I. Three New Prenylflavones from the Root Bark of Morus alba L.’, Chem. Pharm. Bull. 1978, 26, 1394–1402.
- 101T. Nomura, T. Fukai, S. Yamada, M. Katayanagi, ‘Studies on the Constituents of the Cultivated Mulberry Tree. II. Photo-oxidative cyclisation of Morusin’, Chem. Pharm. Bull. 1978, 26, 1431–1436.
- 102M. Aida, K. Shinomiya, K. Matsuzawa, Y. Hano, T. Nomura, ‘Artonins Q, R, S, T, and U, Five New Isoprenylated Phenoles from the Bark of Artocarpus heterophyllus Lamk.’, Heterocycles 1994, 39, 847–858.
- 103I. Etti, R. Abdullah, N. M. Hashim, A. Kadir, A. B. Abdul, C. Etti, I. Malami, P. Waziri, C. W. Ho, ‘Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer’, Molecules 2016, 21, 839.
- 104A. V. R. Rao, S. S. Rathi, K. Ventakaraman, ‘Chaplashin, a flavone containing an oxepine ring from the heartwood of Arthocarpus chaplasha’, Indian J. Chem. (1963–1975) 1972, 10, 905–907.
- 105H. E. Hakim, Afrida, Eliza, S. A. Achmad, N. Aimi, M. Kitajima, L. Makmur, D. Mujahidin, Y. M. Syah, H. Takayama, ‘Artoindonesianin D: a new bioactive pyranoflavone derivative and chaplashin from Artocarpus maingayi’, Proceedings Institut Teknologi Bandung (Indonesia) 2000, 32, 13–19.
- 106S. Boonphong, A. Baramee, P. Kittakoop, P. Puangsombat, ‘Antitubercular and Antiplasmodial Prenylated Flavones from the Roots of Artocarpus altilis’, Chiang Mai J. Sci. 2007, 34, 339–344.
- 107T. Zhao, G.-R. Yan, S.-L. Pan, H.-Y. Wang, A.-J. Hou, ‘New isoprenylated 2-arylbenzofurans and pancreatic lipase inhibitory constituents from Artocarpus nitidus’, Chem. Biodiversity 2009, 6, 2209–2216.
- 108E. H. Hakim, A. Fahriyati, M. S. Kau, S. A. Achmad, L. Makmur, E. L. Ghisalberti, T. Nomura, ‘Artoindonesianins A and B, Two New Prenylated Flavones from the Root of Artocarpus champeden’, J. Nat. Prod. 1999, 62, 613–615.
- 109A. Kijjoa, H. M. Cidade, M. J. T. G. Gonzalez, C. M. Afonso, A. M. S. Silva, W. Herz, ‘Further prenylflavonoids from Artocarpus elasticus’, Phytochemistry 1998, 47, 875–878.
- 110H. M. Cidade, M. S. Nacimento, M. M. Pinto, A. Kijjoa, A. M. S. Silva, W. Herz, ‘Artelastocarpin and Carpelastofuran, Two New Flavones, and Cytotoxicities of Prenyl Flavonoids from Artocarpus elasticus against Three Cancer Cell Lines’, Planta Med. 2001, 67, 867–870.
- 111F. Cerqueira, A. Cordeiro-Da-Silva, N. Araújo, H. Cidade, A. Kijjoa, M. S. J. Nascimento, ‘Inhibition of lymphocyte proliferation by prenylated flavones: artelastin as a potent inhibitor’, Life Sci. 2003, 73, 2321–2334.
- 112M. Pedro, C. F. Lourenço, H. Cidade, A. Kijjoa, M. Pinto, M. S. J. Nascimento, ‘Effects of natural prenylated flavones in the phenotypical ER (+) MCF-7 and ER (−) MDA-MB-231 human breast cancer cells’, Toxicol. Lett. 2006, 164, 24–36.
- 113A. D. Pendse, R. Pendse, A. V. R. Rao, K. Venkataraman, ‘Integrin, Cyclointegrin and Oxyisocyclointegrin, Three New Flavones from the Heartwood of Artocarpus integer’, Indian J. Chem. Sect. B 1976, 14B, 69–72.
- 114R. J. Smith, R. Bower, S. A. Ferguson, R. Rosengren, G. M. Cook, B. C. Hawkins, ‘The Synthesis of (±)-Oxyisocyclointegrin’, Eur. J. Org. Chem. 2019, 2019, 1571–1573.
- 115H.-H. Ko, C.-N. Lin, S.-Z. Yang, ‘New Constituents of Artocarpus rigida’, Helv. Chim. Acta 2000, 83, 3000–3005.
- 116S.-C. Chan, H.-H. Ko, C.-N. Lin, ‘New prenylflavonoids from Artocarpus communis’, J. Nat. Prod. 2003, 66, 427–430.
- 117J.-R. Weng, S.-C. Chan, Y.-H. Lu, H.-C. Lin, H.-H. Ko, C.-N. Lin, ‘Antiplatelet prenylflavonoids from Artocarpus communis’, Phytochemistry 2006, 67, 824–829.
- 118R. A. V. Rao, M. Vardan, K. Venkataraman, ‘Colouring Matters of the Wood of Artocarpus heterophyllus: Part VII – Isocycloheterophyllin, a New Flavone’, Indian J. Chem. (1963–1975) 1973, 11, 298–299.
- 119P. S. Vankar, R. Shanker, S. Wijayapala, ‘Dyeing of Cotton, Silk and Wool with Bark Extract of Artocarpus Heterophyllus Lam.’, Res. J. Text. Apparel 2011, 15, 52–60.
- 120A. N. B. Singab, H. A. El-Beshbishy, M. Yonekawa, T. Nomura, T. Fukai, ‘Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats’, J. Ethnopharmacol. 2005, 100, 333–338.
- 121J. Y. Kim, W. S. Lee, Y. S. Kim, M. J. Curtis-Long, B. W. Lee, Y. B. Ryu, K. H. Park, ‘Isolation of Cholinesterase-Inhibiting Flavonoids from Morus lhou’, J. Agric. Food Chem. 2011, 59, 4589–4596.
- 122J. K. Cho, Y. B. Ryu, M. J. Curtis-Long, J.-Y. Kim, D. Kim, S. Lee, W. S. Lee, K. H. Park, ‘Inhibition and structural reliability of prenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1)’, Bioorg. Med. Chem. Lett. 2011, 21, 2945–2948.
- 123Y.-R. Liao, P.-C. Kuo, W.-J. Tsai, G.-J. Huang, K.-H. Lee, T.-S. Wu, ‘Bioactive chemical constituents from the root bark of Morus australis’, Bioorg. Med. Chem. Lett. 2017, 27, 309–313.
- 124S. H. Jeong, Y. B. Ryu, M. J. Curtis-Long, H. W. Ryu, Y. S. Baek, J. E. Kang, W. S. Lee, K. H. Park, ‘Tyrosinase Inhibitory Polyphenols from Roots of Morus ihou’, J. Agric. Food Chem. 2009, 57, 1195–1203.
- 125J. L. Nantchouang Ouete, L. P. Sandjo, D. W. F. G. Kapche, J. C. Liermann, T. Opatz, I. K. Simo, B. T. Ngadjui, ‘New Flavone from the Roots of Milicia excelsa (Moraceae)’, Z. Naturforsch. C 2013, 68, 259–263.
- 126F. Oke-Altuntas, D. W. F. G. Kapche, J. L. Nantchouang Ouete, I. Demirtas, M. B. Koc, B. T. Ngadjui, ‘Bioactivity evaluation of cudraxanthone I, neocyclomorusin and (9h–3β-acetoxylanosta-7,24-diene isolated from Milicia excelsa Welw. C. C. Berg (Moraceae)’, Med. Chem. Res. 2016, 25, 2250–2257.
- 127R.-W. Jiang, Y. Wang, H. Gao, D.-M. Zhang, W.-C. Ye, ‘Molecular structures and π-π interactions of quercitrin and morusin hydroperoxide’, J. Mol. Struct. 2009, 920, 383–386.
- 128J. Du, Z.-D. He, R.-W. Jiang, W.-C. Ye, H.-X. Xu, P. P. H. But, ‘Antiviral flavonoids from the root bark of Morus alba L.’, Phytochemistry 2003, 62, 1235–1238.
- 129T. Nomura, T. Fukai, J. Matsumoto, ‘Oxidative cyclization of morusin’, J. Heterocycl. Chem. 1980, 17, 641–646.
- 130T. Nomura, ‘in Phenolic Compounds of the Mulberry Tree and Related Plants’, Fortschr. Chem. Org. Naturst. 1988, 53, 87–201.
- 131T. Fukai, T. Nomura, ‘Proof against 2′-hydroxy-3-prenylflavone-oxygen complex by laser desorption/ionization time-of-flight mass spectrometry’, Rapid Commun. Mass Spectrom. 1998, 12, 1945–1951.
- 132A. T. Mbaveng, L. P. Sandjo, S. B. Tankeo, A. R. Ndifor, A. Pantaleon, B. T. Nagdjui, V. Kuete, ‘Antibacterial activity of nineteen selected natural products against multi-drug resistant Gram-negative phenotypes’, Springerplus 2015, 4, 823.
- 133H. J. Lee, D. H. Lyu, U. Koo, K.-W. Nam, S. S. Hong, K. O. Kim, K. H. Kim, D. Lee, W. Mar, ‘Protection of prenylated flavonoids from mori cortex radicis (Moraceae) against nitric oxide-induced cell death in neuroblastoma SH-SY5Y cells’, Arch. Pharmacal Res. 2012, 35, 163–170.
- 134Z. Gu, H. Liang, H. Chen, Y. Xu, G. Yang, W. Zhang, ‘A new type of alkaloid from Goniothalamus cheliensis’, Acta Bot. Yunnan. 2000, 22, 499–502.
- 135S. Khadem, R. J. Marles, ‘Chromone and Flavonoid Alkaloids: Occurrence and Bioactivity’, Molecules 2012, 17, 191–206.
- 136R. Kawazoe, Y. Matsuo, Y. Saito, T. Tanaka, ‘Computationally Assisted Structural Revision of Flavoalkaloids with a Seven-Membered Ring: Aquiledine, Isoaquiledine, and Cheliensisine’, J. Nat. Prod. 2020, 83, 3347–3353.
- 137M. Bruder, P. L. Haseler, P. Muscarella, W. Lewis, C. J. Moody, ‘Synthesis of the Oxepinochromone Natural Products Ptaeroxylin (Desoxykarenin), Ptaeroxylinol, and Eranthin’, J. Org. Chem. 2010, 75, 353–358.
- 138M. Muscarella, M. C. Kimber, C. J. Moody, ‘Synthesis of Ptaeroxylin (Desoxykarenin): An Unusual Chromone from the Sneezewood Tree Ptaeroxylon obliquum’, Synlett 2008, 14, 2101–2102.
- 139R. T. Brown, W. P. Blackstock, C. L. Chapple, ‘Isolation of 5,7-dihydroxy-2-methylchromone and its 7-O-glycosides from Adina rubescens’, J. Chem. Soc. Perkin Trans. 1 1975, 1776–1778.
10.1039/p19750001776 Google Scholar
- 140R. J. Smith, B. C. Hawkins, ‘Synthetic Strategies towards the Synthesis of Oxyisocyclointegrin’, Eur. J. Org. Chem. 2019, 2019, 6847–6854.