Enantioselective halogenation via asymmetric phase-transfer catalysis
Corresponding Author
Sunggi Lee
Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
Correspondence
Sunggi Lee, Department of Physics and Chemistry, DGIST, 333 Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
Email: [email protected]
Won-jin Chung, Department of Chemistry, GIST, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Won-jin Chung
Department of Chemistry, GIST, Gwangju, Republic of Korea
Correspondence
Sunggi Lee, Department of Physics and Chemistry, DGIST, 333 Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
Email: [email protected]
Won-jin Chung, Department of Chemistry, GIST, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Sunggi Lee
Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
Correspondence
Sunggi Lee, Department of Physics and Chemistry, DGIST, 333 Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
Email: [email protected]
Won-jin Chung, Department of Chemistry, GIST, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Won-jin Chung
Department of Chemistry, GIST, Gwangju, Republic of Korea
Correspondence
Sunggi Lee, Department of Physics and Chemistry, DGIST, 333 Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
Email: [email protected]
Won-jin Chung, Department of Chemistry, GIST, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Email: [email protected]
Search for more papers by this authorFunding information: Ministry of Science and ICT, South Korea, Grant/Award Numbers: 2021R1A4A5030513, 2021R1F1A1063125, 2019R1F1A1061697; National Research Foundation of Korea
Abstract
The asymmetric phase-transfer catalysis (PTC) is a flourishing field of contemporary synthetic organic chemistry, and this prominent methodology has been tremendously successful in enantioselective halogenations. Both electrophilic and nucleophilic reaction manifolds were enabled through the exploitation of highly ordered ion pairing and/or hydrogen-bonding interactions around a carefully designed chiral phase-transfer catalyst with an insoluble halogenating reagent as well as a suitable substrate. Fluorination has been the most fruitful, and encouraging results have also been documented with heavier halogens. This review surveys examples of various enantioselective halogenations via the asymmetric PTC from its beginning to prosperity over the past decade.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- 1W.-j. Chung, C. D. Vanderwal, Angew. Chem. Int. Ed. 2016, 55, 4396.
- 2(a) S. Kaneko, Y. Kumatabara, S. Shirakawa, Org. Biomol. Chem. 2016, 14, 5367. (b) J. Tan, N. Yasuda, Org. Process Res. Dev. 2015, 19, 1731. (c) S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 4312. (d) S.-s. Jew, H.-g. Park, Chem. Commun. 2009, 7090. (e) K. Maruoka, Org. Process Res. Dev. 2008, 12, 679. (f) Asymmetric Phase Transfer Catalysis (Ed: K. Maruoka), Wiley-VCH, Weinheim, Germany 2008. (g) T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222. (h) T. Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656. (i) B. Lygo, B. I. Andrews, Acc. Chem. Res. 2004, 37, 518. (j) M. J. O'Donnell, Acc. Chem. Res. 2004, 37, 506. (k) K. Maruoka, T. Ooi, Chem. Rev. 2003, 103, 3013. (l) M. J. O'Donnell, in Catalytic Asymmetric Synthesis, 2nd ed. (Ed: I. Ojima), Wiley-VCH, New York 2000, Ch. 10.
- 3(a) D. Y. Kim, E. J. Park, Org. Lett. 2002, 4, 545. (b) E. J. Park, H. R. Kim, C. U. Joung, D. Y. Kim, Bull. Korean Chem. Soc. 2004, 25, 1451.
- 4(a) J. Luo, W. Wua, L.-W. Xu, Y. Meng, Y. Lu, Tetrahedron Lett. 2013, 54, 2623. (b) E.-M. Tanzer, W. B. Schweizer, M.-O. Ebert, R. Gilmour, Chem. Eur. J. 2012, 18, 2006. (c) B. Wang, Y. He, X. Fu, Z. Wei, Y. Lin, H. Duan, Synlett 2015, 26, 2588. (d) J. Novacek, M. Waser, Eur. J. Org. Chem. 2014, 2014, 802. For a review on asymmetric α-heterofunctionalization by PTC: (e) J. Schörgenhumer, M. Tiffner, M. Waser, Beilstein J. Org. Chem. 2017, 13, 1753.
- 5For reviews on bifunctional chiral phase-transfer catalysts: (a) H. Wang, Catalysts 2019, 9, 244. (b) J. Novacek, M. Waser, Eur. J. Org. Chem. 2013, 2013, 637.
- 6X. Wang, Q. Lan, S. Shirakawa, K. Maruoka, Chem. Commun. 2010, 46, 321.
- 7(a) C.-L. Zhu, X.-Y. Fu, A.-J. Wei, D. Cahard, J.-A. Ma, J. Fluorine Chem. 2013, 150, 60. For reviews on chiral quaternary phosphonium salts: (b) H. Li, H. Liu, H. Guo, Adv. Synth. Catal. 2021, 363, 2023. (c) A. Golandaj, A. Ahmad, D. Ramjugernath, Adv. Synth. Catal. 2017, 359, 3676. (d) S. Liu, Y. Kumatabara, S. Shirakawa, Green Chem. 2016, 18, 331. (e) D. Enders, T. V. Nguyen, Org. Biomol. Chem. 2012, 10, 5327. (f) T. Werner, Adv. Synth. Catal. 2009, 351, 1469.
- 8S. Arimitsu, S. Iwasa, R. Arakaki, J. Org. Chem. 2020, 85, 12804.
- 9M. Gómez-Martínez, D. A. Alonso, I. M. Pastor, G. Guillena, A. Baeza, Asian J. Org. Chem. 2016, 5, 1428.
- 10(a) M. Majdecki, P. Grodek, J. Jurczak, J. Org. Chem. 2021, 86, 995. (b) J. Novacek, U. Monkowius, M. Himmelsbach, M. Waser, Monatsh. Chem. 2016, 147, 533. (c) S. Shirakawa, T. Tokuda, A. Kasai, K. Maruoka, Org. Lett. 2013, 15, 3350.
- 11C. Carter, S. Fletcher, A. Nelson, Tetrahedron: Asymmetry 2003, 14, 1995.
- 12(a) G. L. Hamilton, T. Kanai, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 14984. For chiral anion-mediated asymmetric catalysis: (b) S. Mayer, B. List, Angew. Chem. Int. Ed. 2006, 45, 4193. (c) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496. (d) J. Lacour, D. Moraleda, Chem. Commun. 2009, 46, 7073.
- 13For reviews on the privileged properties of fluorine: (a) N. A. Meanwell, J. Med. Chem. 2018, 61, 5822. (b) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422. (c) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315. (d) D. Cahard, V. Bizet, Chem. Soc. Rev. 2014, 43, 135. (e) Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed (Ed. P. Kirsch), Wiley-VCH, Weinheim, Germany 2013. (f) Fluorine in Pharmaceutical and Medicinal Chemistry (Eds: V. Gouverneur, K. Müller), Imperial College Press, London, UK 2012. (g) L. Hunter, Beilstein J. Org. Chem. 2010, 6, 38. (h) Fluorine in Medicinal Chemistry and Chemical Biology (Ed: I. Ojima), Wiley-Blackwell, Chichester, UK 2009. (i) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320. (j) D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308. (k) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359. (l) K. L. Kirk, Org. Process Res. Dev. 2008, 12, 305. (m) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881. (n) C. Isanbor, D. O'Hagan, J. Fluorine Chem. 2006, 127, 303. (o) H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, ChemBioChem 2004, 5, 637. (p) P. Jeschke, ChemBioChem 2004, 5, 570.
- 14For reviews on enantioselective fluorination: (a) Y. Zhu, J. Han, J. Wang, N. Shibata, M. Sodeoka, V. A. Soloshonok, J. A. S. Coelho, F. D. Toste, Chem. Rev. 2018, 118, 3887. (b) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115, 826. (c) J. R. Wolstenhulme, V. Gouverneur, Acc. Chem. Res. 2014, 47, 3560. (d) G. Valero, X. Companyó, R. Rios, Chem. Eur. J. 2011, 17, 2018. (e) D. Cahard, X. Xu, S. Couve-Bonnaire, X. Pannecoucke, Chem. Soc. Rev. 2010, 39, 558. (f) S. Lectard, Y. Hamashima, M. Sodeoka, Adv. Synth. Catal. 2010, 352, 2708. (g) J.-A. Ma, D. Cahard, Chem. Rev. 2004, 104, 6119. (h) J.-A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR1. (i) N. Shibata, T. Ishimaru, S. Nakamura, T. Toru, J. Fluorine Chem. 2007, 128, 469. (j) C. Bobbio, V. Gouverneur, Org. Biomol. Chem. 2006, 4, 2065.
- 15For ion pair catalysis: (a) D. Qian, J. Sun, Chem. Eur. J 2019, 25, 3740. (b) S. Liao, B. List, Angew. Chem. Int. Ed. 2010, 49, 628. (c) M. Mahlau, B. List, Angew. Chem. Int. Ed. 2013, 52, 518. (d) S. Lee, P. S. J. Kaib, B. List, J. Am. Chem. Soc. 2017, 139, 2156. (e) S. Lee, H. Y. Bae, B. List, Angew. Chem. Int. Ed. 2018, 57, 12162.
- 16L. Simón, J. M. Goodman, J. Org. Chem. 2011, 76, 1775.
- 17K. L. Tan, ACS Catal. 2011, 1, 877.
- 18T. Satyanarayana, S. Abraham, H. B. Kagan, Angew. Chem. Int. Ed. 2009, 48, 456.
- 19V. Rauniyar, A. D. Lackner, G. L. Hamilton, F. D. Toste, Science 2011, 334, 1681.
- 20For reviews on enantioselective halocyclizations: (a) A. M. F. Phillips, A. J. L. Pombeiro, Eur. J. Org. Chem. 2021, 2021, 3938. (b) R. Kristianslund, J. E. Tungen, T. V. Hansen, Org. Biomol. Chem. 2019, 17, 3079. (c) Y. A. Cheng, W. Z. Yu, Y.-Y. Yeung, Org. Biomol. Chem. 2014, 12, 2333. (d) S. Zheng, C. M. Schienebeck, W. Zhang, H.-Y. Wang, W. Tang, Asian J. Org. Chem. 2014, 3, 366. (e) C. K. Tan, W. Z. Yu, Y.-Y. Yeung, Chirality 2014, 26, 328. (f) C. K. Tan, Y.-Y. Yeung, Chem. Commun. 2013, 49, 7985. (g) S. R. Chemler, M. T. Bovino, ACS Catal. 2013, 3, 1076. (h) S. E. Denmark, W. E. Kuester, M. T. Burk, Angew. Chem. Int. Ed. 2012, 51, 10938. (i) U. Hennecke, Chem. Asian J. 2012, 7, 456. (j) C. K. Tan, L. Zhou, Y.-Y. Yeung, Synlett 2011, 2011, 1335. (k) S. A. Snyder, D. S. Treitler, A. P. Brucks, Aldrichimica Acta 2011, 44, 27. (l) A. Castellanos, S. P. Fletcher, Chem. Eur. J. 2011, 17, 5766.
- 21H. P. Shunatona, N. Früh, Y.-M. Wang, V. Rauniyar, F. D. Toste, Angew. Chem. Int. Ed. 2013, 52, 7724.
- 22X.-W. Liang, C. Liu, W. Zhang, S.-L. You, Chem. Commun. 2017, 53, 5531.
- 23(a) H. Egami, J. Asada, K. Sato, D. Hashizume, Y. Kawato, Y. Hamashima, J. Am. Chem. Soc. 2015, 137, 10132. (b) D. Parmar, M. S. Maji, M. Rueping, Chem. Eur. J. 2014, 20, 83.
- 24H. Egami, T. Niwa, H. Sato, R. Hotta, D. Rouno, Y. Kawato, Y. Hamashima, J. Am. Chem. Soc. 2018, 140, 2785.
- 25T. Hashimoto, H. Kimura, H. Nakatsu, K. Maruoka, J. Org. Chem. 2011, 76, 6030.
- 26T. Rouno, T. Niwa, K. Nishibashi, N. Yamamoto, H. Egami, Y. Hamashima, Molecules 2019, 24, 3464.
- 27H. Egami, R. Hotta, M. Otsubo, T. Rouno, T. Niwa, K. Yamashita, Y. Hamashima, Org. Lett. 2020, 22, 5656.
- 28R. J. Phipps, K. Hiramatsu, F. D. Toste, J. Am. Chem. Soc. 2012, 134, 8376.
- 29IPA has been used in organocatalysis: T. D. Beeson, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 8826.
- 30M. Morgenthaler, E. Schweizer, A. Hoffmann-Röder, F. Benini, R. E. Martin, G. Jaeschke, B. Wagner, H. Fischer, S. Bendels, D. Zimmerli, J. Schneider, F. Diederich, M. Kansy, K. Müller, ChemMedChem 2007, 2, 1100.
- 31For examples of geminal interhalogenations: (a) R. Frantz, L. Hintermann, M. Perseghini, D. Broggini, A. Togni, Org. Lett. 2003, 5, 1709. (b) K. Shibatomi, H. Yamamoto, Angew. Chem. Int. Ed. 2008, 47, 5796. (c) K. Shibatomi, A. Narayama, Y. Soga, T. Muto, S. Iwasa, Org. Lett. 2011, 13, 2944. (d) M. D. Hayes, M. Rodríguez-Alvarado, S. E. Brenner-Moyer, Tetrahedron Lett. 2015, 56, 4718. (e) M. J. Cho, Y. K. Kang, N. R. Lee, D. Y. Kim, Bull. Korean Chem. Soc. 2007, 28, 2191. (f) S. H. Kang, D. Y. Kim, Adv. Synth. Catal. 2010, 352, 2783. (g) A. N. Herron, D. Liu, G. Xia, J.-Q. Yu, J. Am. Chem. Soc. 2020, 142, 2766. (h) G. Choi, H. E. Kim, S. Hwang, H. Jang, W.-j. Chung, Org. Lett. 2020, 22, 4190.
- 32Geminal bromofluorides and iodofluorides are useful synthetic precursors: (a) K. Iseki, Y. Kuroki, Y. Kobayashi, Tetrahedron 1999, 55, 2225. (b) Y. Liang, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 5520. (c) X. Jiang, S. Sakthivel, K. Kulbitski, G. Nisnevich, M. Gandelman, J. Am. Chem. Soc. 2014, 136, 9548. (d) X. Jiang, M. Gandelman, J. Am. Chem. Soc. 2015, 137, 2542. (e) Y.-M. Su, G.-S. Feng, Z.-Y. Wang, Q. Lan, X.-S. Wang, Angew. Chem. Int. Ed. 2015, 54, 6003. (f) Y. Wu, H.-R. Zhang, Y.-X. Cao, Q. Lan, X.-S. Wang, Org. Lett. 2016, 18, 5564. (g) J. Sheng, H.-Q. Ni, H.-R. Zhang, K.-F. Zhang, Y.-N. Wang, X.-S. Wang, Angew. Chem. Int. Ed. 2018, 57, 7634.
- 33T. Honjo, R. J. Phipps, V. Rauniyar, F. D. Toste, Angew. Chem. Int. Ed. 2012, 51, 9684.
- 34Q.-S. Guo, D.-M. Du, J. Xu, Angew. Chem. Int. Ed. 2008, 47, 759.
- 35K. Hiramatsu, T. Honjo, V. Rauniyar, F. D. Toste, ACS Catal. 2016, 6, 151.
- 36J. P. Bégué, D. Bonnet-Delpon, ChemMedChem 2007, 2, 608.
- 37P. Kwiatkowski, T. D. Beeson, J. C. Conrad, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 1738.
- 38X. Yang, R. J. Phipps, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 5225.
- 39C. Ye, B. Twamley, J. M. Shreeve, Org. Lett. 2005, 7, 3961.
- 40R. J. Phipps, F. D. Toste, J. Am. Chem. Soc. 2013, 135, 1268.
- 41Under homogeneous conditions, phenol is known to produce a complex mixture upon reaction with Selectfluor: (a) S. Stavber, M. Jereb, M. Zupan, Synlett 1999, 1999, 1375.
10.1055/s-1999-2840 Google Scholar(b) S. Stavber, M. Jereb, M. Zupan, J. Phys. Org. Chem. 2002, 15, 56. (c) S. Stavber, M. Zupan, Synlett 1996, 1996, 693.10.1055/s-1996-5544 Google Scholar(d) I. Pravst, M. P. Iskra, M. Jereb, M. Zupan, S. Stavber, Tetrahedron 2006, 62, 4474.
- 42D. Magdziak, S. J. Meek, T. R. R. Pettus, Chem. Rev. 2004, 104, 1383.
- 43S. Dong, E. Hamel, R. Bai, D. G. Covell, J. A. Beutler, J. A. Porco Jr., Angew. Chem. Int. Ed. 2009, 48, 1494.
- 44H. Egami, T. Rouno, T. Niwa, K. Masuda, K. Yamashita, Y. Hamashima, Angew. Chem. Int. Ed. 2020, 59, 14101.
- 45M. Otsubo, K. Sakimoto, H. Egami, Y. Hamashima, Tetrahedron 2021, 96, 132355.
- 46J. Wu, Y.-M. Wang, A. Drljevic, V. Rauniyar, R. J. Phipps, F. D. Toste, Proc. Natl. Acad. Sci. USA. 2013, 110, 13729.
- 47(a) W. Zi, Y.-M. Wang, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 12864. (b) A. J. Neel, A. Milo, M. S. Sigman, F. D. Toste, J. Am. Chem. Soc. 2016, 138, 3863. (c) J. A. S. Coelho, A. Matsumoto, M. Orlandi, M. J. Hilton, M. S. Sigman, F. D. Toste, Chem. Sci. 2018, 9, 7153.
- 48T. Niwa, K. Ujiie, H. Sato, H. Egami, Y. Hamashima, Chem. Pharm. Bull. 2018, 66, 920.
- 49T. Niwa, K. Nishibashi, H. Sato, K. Ujiie, K. Yamashita, H. Egami, Y. Hamashima, J. Am. Chem. Soc. 2021, 143, 16599.
- 50For halogenation-induced semi-pinacol rearrangement: B. M. Wang, L. Song, C. A. Fan, Y. Q. Tu, W. M. Chen, Synlett 2003, 1497.
- 51For the use of a BINOL-derived CPA for enantioselective semipinacol rearrangements of electron-rich cyclic enol ethers: Q.-W. Zhang, C.-A. Fan, H.-J. Zhang, Y.-Q. Tu, Y.-M. Zhao, P. Gu, Z.-M. Chen, Angew. Chem. Int. Ed. 2009, 48, 8572.
- 52F. Romanov-Michailidis, L. Guénée, A. Alexakis, Angew. Chem. Int. Ed. 2013, 52, 9266.
- 53M. Wang, B. M. Wang, L. Shi, Y. Q. Tu, C.-A. Fan, S. H. Wang, X. D. Hu, S. Y. Zhang, Chem. Commun. 2005, 5580.
- 54For catalytic enantioselective chlorination- or bromination-induced semi-pinacol rearrangements with electron-rich cyclic enol ethers: (a) Z.-M. Chen, Q.-W. Zhang, Z.-H. Chen, H. Li, Y.-Q. Tu, F.-M. Zhang, J.-M. Tian, J. Am. Chem. Soc. 2011, 133, 8818. (b) H. Li, F.-M. Zhang, Y.-Q. Tu, Q.-W. Zhang, Z.-M. Chen, Z.-H. Chen, J. Li, Chem. Sci. 2011, 2, 1839.
- 55F. Romanov-Michailidis, M. Romanova-Michaelides, M. Pupier, A. Alexakis, Chem. Eur. J. 2015, 21, 5561.
- 56F. Romanov-Michailidis, M. Pupier, C. Besnard, T. Bürgi, A. Alexakis, Org. Lett. 2014, 16, 4988.
- 57Y.-M. Wang, J. Wu, C. Hoong, V. Rauniyar, F. D. Toste, J. Am. Chem. Soc. 2012, 134, 12928.
- 58E. Miller, S. Kim, K. Gibson, J. S. Derrick, F. D. Toste, J. Am. Chem. Soc. 2020, 142, 8946.
- 59Z. Feng, Y.-L. Xiao, X. Zhang, Acc. Chem. Res. 2018, 51, 2264.
- 60(a) M. Suda, Tetrahedron Lett. 1980, 21, 2555. (b) T. Morikawa, I. Kumadaki, M. Shiro, Chem. Pharm. Bull. 1985, 33, 5144. (c) T. Fujita, R. Kinoshita, T. Takanohashi, N. Suzuki, J. Ichikawa, Beilstein J. Org. Chem. 2017, 13, 2682.
- 61(a) H. J. Davis, R. J. Phipps, Chem. Sci. 2017, 8, 864. (b) S. E. Denmark, M. T. Burk, Proc. Natl. Acad. Sci. USA 2010, 107, 20655. (c) S. E. Denmark, M. T. Burk, Org. Lett. 2012, 14, 256. (d) M. T. Mihai, B. D. Williams, R. J. Phipps, J. Am. Chem. Soc. 2019, 141, 15477. (e) G. R. Genov, J. L. Douthwaite, A. S. K. Lahdenperä, D. C. Gibson, R. J. Phipps, Science 2020, 367, 1246.
- 62(a) W. Xie, G. Jiang, H. Liu, J. Hu, X. Pan, H. Zhang, X. Wan, Y. Lai, D. Ma, Angew. Chem. Int. Ed. 2013, 52, 12924. (b) X. Feng, G. Jiang, Z. Xia, J. Hu, X. Wan, J.-M. Gao, Y. Lai, W. Xie, Org. Lett. 2015, 17, 4428.
- 63H. Liu, G. Jiang, X. Pan, X. Wan, Y. Lai, D. Ma, W. Xie, Org. Lett. 2014, 16, 1908.
- 64Z. Xia, J. Hu, Z. Shen, X. Wan, Q. Yao, Y. Lai, J.-M. Gao, W. Xie, Org. Lett. 2016, 18, 80.
- 65Z. Shen, X. Pan, Y. Lai, J. Hu, X. Wan, X. Li, H. Zhange, W. Xie, Chem. Sci. 2015, 6, 6986.
- 66H.-J. Long, Y.-L. Li, B.-Q. Zhang, W.-Y. Xiao, X.-Y. Zhang, L. He, J. Deng, Org. Lett. 2021, 23, 8153.
- 67F. Romanov-Michailidis, L. Guénée, A. Alexakis, Org. Lett. 2013, 15, 5890.
- 68(a) L. Pfeifer, K. M. Engle, G. W. Pidgeon, H. A. Sparkes, A. L. Thompson, J. M. Brown, V. Gouverneur, J. Am. Chem. Soc. 2016, 138, 13314. (b) K. M. Engle, L. Pfeifer, G. W. Pidgeon, G. T. Giuffredi, A. L. Thompson, R. S. Paton, J. M. Brown, V. Gouverneur, Chem. Sci. 2015, 6, 5293. For a recent review on asymmetric fluorination by chiral hydrogen-bonding-based catalysts: (c) F. Auria-Luna, S. Mohammadi, M. Divar, M. C. Gimeno, R. P. Herrera, Adv. Synth. Catal. 2020, 362, 5275.
- 69(a) G. Pupo, F. Ibba, D. M. H. Ascough, A. C. Vicini, P. Ricci, K. E. Christensen, L. Pfeifer, J. R. Morphy, J. M. Brown, R. S. Paton, V. Gouverneur, Science 2018, 360, 638. (b) G. Pupo, V. Gouverneur, J. Am. Chem. Soc. 2022, 144, 5200.
- 70(a) D. W. Kim, D. Y. Chi, Angew. Chem. Int. Ed. 2004, 43, 483. (b) D. W. Kim, D. J. Hong, K. S. Jang, D. Y. Chi, Adv. Synth. Catal. 2006, 348, 1719. (c) A. Taher, D. W. Kim, Bull. Korean Chem. Soc. 2020, 41, 1140.
- 71(a) J. A. Birrell, J. N. Desrosiers, E. N. Jacobsen, J. Am. Chem. Soc. 2011, 133, 13872. (b) A. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713. (c) K. Brak, E. N. Jacobsen, Angew. Chem. Int. Ed. 2013, 52, 534. (d) S. M. Banik, A. Levina, A. M. Hyde, E. N. Jacobsen, Science 2017, 358, 761. (e) S. Lin, E. N. Jacobsen, Nat. Chem. 2012, 4, 817.
- 72(a) J.-W. Lee, M. T. Oliveira, H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim, C. E. Song, Chem. Soc. Rev. 2016, 45, 4638. (b) S. Liang, G. B. Hammond, B. Xu, Chem. – Eur. J. 2017, 23, 17850.
- 73(a) D. O'Hagan, C. Schaffrath, S. L. Cobb, J. T. G. Hamilton, C. D. Murphy, Nature 2002, 416, 279. (b) C. Dong, F. Huang, H. Deng, C. Schaffrath, J. B. Spencer, D. O'Hagan, J. H. Naismith, Nature 2004, 427, 561. (c) X. Zhu, D. A. Robinson, A. R. McEwan, D. O'Hagan, J. H. Naismith, J. Am. Chem. Soc. 2007, 129, 14597. (d) D. O'Hagan, H. Deng, Chem. Rev. 2015, 115, 634.
- 74(a) G. Pupo, A. C. Vicini, D. M. H. Ascough, F. Ibba, K. E. Christensen, A. L. Thompson, J. M. Brown, R. S. Paton, V. Gouverneur, J. Am. Chem. Soc. 2019, 141, 2878. (b) A. C. Vicini, D.-M. Alozie, P. Courtes, G. Roagna, C. Aubert, V. Certal, Y. El-Ahmad, S. Roy, V. Gouverneur, Org. Process Res. Dev. 2021, 25, 2730.
- 75G. Roagna, D. M. H. Ascough, F. Ibba, A. C. Vicini, A. Fontana, K. E. Christensen, A. Peschiulli, D. Oehlrich, A. Misale, A. A. Trabanco, R. S. Paton, G. Pupo, V. Gouverneur, J. Am. Chem. Soc. 2020, 142, 14045.
- 76For desymmetrization of azetidinium salts with mercaptobenzothiazoles and a chiral phosphate catalyst: D. Qian, M. Chen, A. C. Bissember, J. Sun, Angew. Chem. Int. Ed. 2018, 57, 3763 The application of this catalytic system with F− did not result in the formation of γ-fluoroamines.
[Correction added on 23 June 2022, after first online publication: The missing Author Biographies section was added in this version.]