Synthesis of Secondary and Tertiary Oxime Carbamate Derivatives and their Structure-Dependent Bioactivity
Rajamanickam Sivakumar
Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Korea
Search for more papers by this authorVenugopal Thanikachalam
Department of Chemistry, Annamalai University, Chidambaram 608 002, Tamil Nadu, India
Search for more papers by this authorBong-Gi Kim
Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Korea
Search for more papers by this authorCorresponding Author
Sung Dong Kim
Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Korea
Search for more papers by this authorRajamanickam Sivakumar
Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Korea
Search for more papers by this authorVenugopal Thanikachalam
Department of Chemistry, Annamalai University, Chidambaram 608 002, Tamil Nadu, India
Search for more papers by this authorBong-Gi Kim
Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Korea
Search for more papers by this authorCorresponding Author
Sung Dong Kim
Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Korea
Search for more papers by this authorAbstract
Biologically active novel piperidin-4-one oxime carbamates were synthesized from 3-ethyl-1-methyl-2,6-diphenylpiperidin-4-one oxime, 1,1′-carbonyldiimidazole (CDI), and primary or secondary amines in the presence of sodium hydride as base. Commercially available, cheaper, and safer CDI was utilized as carbonyl source, instead of toxic phosgene/triphosgene and carbon monoxide. The devised method is feasible for primary and secondary amines to make their corresponding oxime carbamate derivatives, through oxime–imidazolide intermediate, in high yield. When the antimicrobial activity of obtained oxime carbamate derivatives was investigated in comparison with streptomycin and amphotericin B as standards, the oxime carbamate containing heteroaromatic thiazole ring exhibits outstanding antimicrobial effectiveness, regardless of bacterial or fungal types.
Supporting Information
Filename | Description |
---|---|
bkcs11159-sup-0001-supInfo.pdfPDF document, 1.4 MB |
Figure S1. 1H NMR and 13C NMR spectra of 5a. Figure S2. 1H NMR and 13C NMR spectra of 5b. Figure S3. 1H NMR and 13C NMR spectra of 5c. Figure S4. 1H NMR and 13C NMR spectra of 5d. Figure S5. 1H NMR and 13C NMR spectra of 5e. Figure S6. 1H NMR and 13C NMR spectra of 5f. Figure S7. 1H NMR and 13C NMR spectra of 5g. Figure S8. 1H NMR and 13C NMR spectra of 5h. Figure S9. 1H NMR and 13C NMR spectra of 5i. Figure S10. 1H NMR and 13C NMR spectra of 5j. Figure S11. 1H NMR and 13C NMR spectra of 5k. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. W. Pelletier, M. J. Schneider, Chemical and Biological Perspectives, Vol. 10, Elsevier Science Ltd, New York, 1996, p. 155.
- 2 A. R. Kartritzky, W. Q. Fan, J. Org. Chem. 1990, 55, 3205.
- 3 M. Arockia doss, S. Savithiri, S. Vembu, G. Rajarajan, V. Thanikachalam, Can. Chem. Trans. 2015, 3, 261.
- 4 S. K. Sahu, A. C. Tripathi, M. Koshy, S. K. Saraf, Med. Chem. Res. 2014, 23, 67.
- 5 S. Savithiri, M. Arockia doss, G. Rajarajan, V. Thanikachalam, Can. Chem. Trans. 2014, 2, 403.
- 6 R. Sivakumar, K. Gokula krishnan, V. Thanikachalam, Bioorg. Med. Chem. Lett. 2013, 23, 3195.
- 7 T. Maruthavanan, P. Venkatesan, Nat. Prod. Res. 2013, 27, 238.
- 8 S. B. Zaware, R. G. Gonnade, D. Srinivas, A. Khand, S. Y. Rane, New J. Chem. 2011, 35, 1615.
- 9 B. B. Cwynar, L. Zaprutko, Phytochem. Rev. 2015, 14, 203.
- 10 Y. Q. Xie, Z. L. Huang, H. D. Yan, J. Li, L. Y. Ye, L. M. Che, S. Tu, Chem. Biol. Drug Des. 2015, 85, 743.
- 11 H. Dai, Y. Q. Li, D. Du, X. Qin, X. Zhang, H. B. Yu, J. X. Fang, J. Agric. Food Chem. 2008, 56, 10805.
- 12 P. Adams, F. A. Baron, Chem. Rev. 1965, 65, 567.
- 13(a) A. F. Carley, P. R. Davies, M. W. Roberts, J. Chem. Soc., Chem. Commun. 1989, 677; (b) M. George, R. G. Weiss, J. Am. Chem. Soc. 2001, 123, 10393; (c) M. George, R. G. Weiss, Langmuir 2002, 18, 7124; (d) M. George, R. G. Weiss, Langmuir 2003, 19, 1017; (e) E. Carretti, L. Dei, P. Baglioni, R. G. Weiss, J. Am. Chem. Soc. 2003, 125, 5121.
- 14(a) D. P. N. Satchell, R. S. Satchell, Chem. Soc. Rev. 1975, 4, 231; (b) V. Snieckus, Chem. Rev. 1990, 90, 879; (c) P. G. Jessop, T. Ikariya, R. Noyori, Chem. Rev. 1995, 95, 259; (d) W. W. Cleland, T. J. Andrews, S. Gutteridge, F. C. Hartman, G. H. Lorimer, Chem. Rev. 1998, 98, 549; (e) F. Tanaka, Chem. Rev. 2002, 102, 4885.
- 15 I. Vauthey, F. Valot, C. Gozzi, F. Fache, M. Lemaine, Tetrahedron Lett. 2000, 41, 6347.
- 16 W. T. The, J. Huang, N. Arrington, G. M. Dill, J. Agric. Food Chem. 1987, 35, 817.
- 17 K. Zhang, A. M. Nelson, S. J. Talley, M. Chen, E. Margaretta, A. G. Hudson, R. B. Moore, T. E. Long, Green Chem. 2016, 18, 4667.
- 18 T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd ed., Wiley & Sons, New York, 1997, p. 175.
- 19 D. K. Hutchinson, Curr. Top. Med. Chem. 2003, 3, 1021.
- 20(a) R. Ouellet, J. Rousseau, N. Brasseur, J. E. Lier, M. Doksic, G. Westera, J. Med. Chem. 1984, 27, 509; (b) F. Giannessi, P. Pessotto, E. Tassoni, P. Chiodi, R. Conte, F. D. Angeles, N. D. Uomo, R. Catini, R. Deias, M. O. Tinti, P. Carminate, A. Ardnini, J. Med. Chem. 2003, 46, 303; (c) A. Zega, Curr. Med. Chem. 2005, 12, 589; (d) A. B. Reiss, M. E. Vagell, Curr. Med. Chem. 2006, 13, 3227; (e) Y. Shao, H. Ding, W. Tang, L. Lou, L. Hu, Bioorg. Med. Chem. 2007, 15, 5061; (f) J. Vinsova, A. Imramvosky, J. Jampilek, J. F. Monreal, M. Dolezal, Anti-Infect. Agents Med. Chem. 2008, 7, 12.
- 21(a) A. P. Kurtz, J. A. Durden, A. A. Sousa, M. H. J. Weiden, J. Agric. Food Chem. 1987, 35, 106; (b) A. P. Kurtz, J. A. Jr Durden, J. Agric. Food Chem. 1987, 35, 115; (c) S. S. Patil, S. D. Jadhav, M. B. Deshmukh, J. Chem. Sci. 2012, 124, 1043.
- 22(a) S. Gattinoni, C. De simone, S. Dallavalle, F. Fezza, R. Nannei, N. Battista, P. Minetti, G. Quattrociocchi, A. Caprioli, F. Borsini, W. Cabri, S. Penco, L. Merlini, M. Maccarrone, Bioorg. Med. Chem. Lett. 2010, 20, 4406; (b) S. Y. Sit, C. M. Conway, K. Xie, R. Bertekap, C. Bourin, K. D. Burris, Bioorg. Med. Chem. Lett. 2010, 20, 1272.
- 23 J. S. Norwick, N. A. Powell, T. M. Nguyen, G. Noronha, J. Org. Chem. 1992, 57, 7364.
- 24 P. Jager, C. N. Rentzea, H. Kieczka, Ullmann's Encyclopedia of IndustrialChemistry, 5th ed., VCH, Weinheim, 1986, p. 51.
- 25 P. Majer, R. Randad, J. Org. Chem. 1994, 59, 1937.
- 26 R. Batey, V. Santhakumar, C. Yoshina-Ishii, S. Taylor, Tetrahedron Lett. 1998, 39, 6267.
- 27(a) S. Cenini, C. Crotti, M. Pizzotti, F. Porta, J. Org. Chem. 1988, 53, 1243; (b) F. Ragaini, S. Cenini, Organometallics 1994, 13, 1178; (c) F. Paul, J. Fischer, P. Ochsenbein, J. A. Osborn, Organometallics 1998, 17, 2199.
- 28 B. Wan, S. L. Liao, D. Yu, Appl. Catal. A Gen. 1999, 183, 81.
- 29 J. Yadav, G. Reddy, M. Reddy, H. Meshram, Tetrahedron Lett. 1998, 39, 3259.
- 30 X. Ariza, F. Urpi, J. Villarassa, Tetrahedron Lett. 1999, 40, 7515.
- 31 A. Inesi, V. Mucciante, L. Rossi, J. Org. Chem. 1998, 63, 1337.
- 32 V. Baliah, A. Ekambaram, T. S. Govindarajan, Curr. Sci. 1954, 23, 264.
- 33 C. R. Noller, V. Baliah, J. Am. Chem. Soc. 1948, 70, 3853.
- 34 M. Balasubramanian, N. Padma, Tetrahedron 1963, 19, 2135.
- 35 M. Uma, K. Ragothaman, Indian J. Chem. 1980, 19B, 74.
- 36 R. T. McBurney, J. C. Walton, J. Am. Chem. Soc. 2013, 135, 7349.
- 37 G. Bertolini, G. Pavich, B. Vergani, J. Org. Chem. 1998, 63, 6031.